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Dynamic equations and bulk viscosity near the gas-liquid critical point
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We derive dynamic equations of the mass, energy, and momentum densities to describe dynamics of highly
compressible fluids near the gas-liquid critical point. In particular, the complete expression for the stress tensor
is presented, which is nonlinear with respect to the fluctuations of the mass and energy densities. The most
dominant nonlinearity in the stress tensor can then be identified and a very simple and systematic theory can
be constructed on the enhanced bulk viscosity near the critical point with no adjustable parameter. We intro-
duce the frequency-dependent adiabatic compressibility and constant-volume specific heat. Our theory is es-
sentially equivalent to Kawasaki’'s theofiPhys. Rev. Al, 1750(1970] at low frequencies and reproduces
Ferrell and Bhattacharjee’s phenomenold&ys. Lett. A36, 109 (1981); 88, 77 (1982; Phys. Rev. A3],
1788(1985] at high frequencies. We explicitly calculate strikingly slow decay of the time correlation function
of the diagonal part of the stress tensor. As proposed experiments we examine how the density changes
adiabatically in two situations with a fixed volume or pressure. As a by-product we also derive some relations
among the critical amplitudes of the constant-volume specific heat above and Bglow is shown to
correspond to the specific heat at constant magnetization in Ising spin syEB083-651X97)04201-3

PACS numbg(s): 66.20+d, 64.70.Fx, 64.60.Ht, 05.70.Jk

I. INTRODUCTION in which only the entropy density and the transverse part of
the velocity field are involved. Although this treatment is
Hydrodynamics and thermodynamics are inseparablallowable in calculating the diffusive relaxation, there can be
coupled near the critical point of fluids. This dynamical cou-a number of problems in which the high compressibility of
pling gives rise to the well-known critical divergence of the fluids is crucial. We mention adiabatic effects in the fixed
transport coefficients such as the thermal conductivity andfolume condition against time-dependent external perturba-
the shear viscositi1—4]. Moreover, it produces a variety of tions such as an oscillating boundary temperature. There are
complex effects observable on macroscopic spatial scaleglso only a few theories as to how the temperature and the
Such effects are particularly unique near the gas-liquid critipressure vary in time in the course of spinodal decomposi-
cal point, where fluids are highly compressible even againstion [10] or nucleation[11] in the adiabatic condition or in
very small pressure and temperature variations. As a classtbe fixed volume condition. The latter aspect is very impor-
example severe density stratification under gravity has longant near the gas-liquid critical point. Molecular dynamic
been studied near the gas-liquid critical point mainly fromsimulations face this problem seriously also.
statics[5], whereas it was recognized in an early period that It is established that, while the sound mode does not af-
thermal relaxation under gravity can be highly nonlinearfect the diffusive mode, its attenuation is drastically en-
with respect to both gravity and heat curr¢él. In addition  hanced by slow relaxation of a pressure deviation bilinear
a crucial role of adiabatic heating effects has recently beewith respect to the entropy fluctuations. However, theories of
established both theoretically?] and experimentally{8]. critical sound attenuation have not yet been fully satisfactory
That is, if a sample with a fixed volume is warmed from thejust because of the lack of the exact expression for the stress
boundary, sounds created by a thermal expansion near tiiensor in the Ginzburg-Landau scheme. A brief summary of
boundary cause instantaneous, adiabatic temperature changevious theories is as follows. Developing an idea of Botch
throughout the container. This effect, sometimes called th@nd Fixman[12], Kawasaki predicted strong critical diver-
Piston effect, results in critical speeding up of thermal equili-gence of the sound attenuation or the bulk viscosity in his
bration. This mechanism has turned out to explain an earlynode coupling theory13]. However, it involves compli-
experiment in space by Nitsche and Str4@b cated combinations of thermodynamic quantities and is in
At the present stage the research in this direction has netisagreement with experiments at high frequencies. Mistura
yet attracted enough attention and still remains prematurgaresented a formal theory of complex frequency-dependent
Above all, there is no systematic analysis on the interplayadiabatic compressibility and specific h¢a,14. Ferrell
between adiabatic processes and thermal relaxation on va@nd Bhattacharjee developed a scaling theory on the fre-
ous space and time scales on the basis of a reliable dynanfiuency dependence of the complex specific fi2aL They
cal model of compressible near-critical fluids. To this end,predicted that, at high frequenci&s»l“? the frequency-
we need to know the complete expression for the relevaniependent specific heat behavesias) ( “'** and this excel-
part of the stress tensor induced by the critical fluctuationslently explains the observed high-frequency anomaly. Here
Because in near-critical fluids the sound mode has a fast timE = ¢~ * with z=3 is the order parameter relaxation rate, and
scale and does not affect the diffusive mode of the entropy/r»z=0.057 is a universal numbes, and » being the criti-
relaxation, the mode coupling thedr{—3] and the dynamic cal exponents. This argument was originally devised for
renormalization group theor] start with dynamic models “He near the superfluid transitidi6]. Kroll and Ruhland
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applied the renormalization group method at sneatl4—d ables with molecular expressions, while those without the
to calculate the generalized frequency-dependent bulk vissaret are thermodynamic quantities in equilibrium or simply
cosity or adiabatic compressibilitjf17]. They obtained a constants. The equilibrium averageseaindp are written as
scaling form for the adiabatic compressibility as a function . .

of iw/T;. It exhibits the singular frequency dependence u=(e(r,t)), p=(p(r,1), 21

(iw) %" in the high frequency regime in agreement with . . .
the Ferrell-Bhattacharjee prediction. In the Kroll and Ruh—Where( ) s the average over the grand canonical distribu-

land theory coupled Langevin equations containing som%':n' We note that the energy supported by each particle may

phenomenological coefficients were assumed for the entrop e arbitrarily .Sh'ﬁed by a constant value, sa,mis means
s(r,t) and the pressure(r,t) at the starting point of the at the physical properties of the system are invariant with

renormalization group procedure. Afterwards Dengler and€spect to the following redefinition of the energy variable,
Schwabldg 18] presented a theory by generalizing the model

of Kroll and Ruhland and calculated a universal amplitude
ratio for the sound attenuation above and belbw Very €0 being arbitrary.
recently Folk and Mosefr19] have briefly reported a calcu-  |n our case it is convenient to choose=p/kgT as the

Iation.of the sound attenuation to be in good agreement witlthermodynamic potential dependent on the following two
experiments. In summary, however, we note that the relafield variableg22—27,

tionships among these theories have not yet been adequately

é’:é"_ 60;), (22)

clarified. In particular, we need to link Kawasaki's theory 1/1 1

and Ferrell and Bhattacharjee’s theory from first principles. B= k_B T_c_ T 23
The main aim of this paper is to present a theory in which

the mass density and the energy density are dynamic vari- 1(p  pe

ables. They are more fundamental than the entropy and the V= k—B(?— T_c) (2.4

pressure used in the previous theories and their dynamic

equations can be obtained unambiguously from the Conse(yhere u is the chemical potential per unit masg, is the
vation laws. The organization of this paper is as follows. Ingyitical temperaturey, is the critical value ofu, andkg is
Sec. Il we will discuss the mapping relationship betweenye gojizmann constant. Our definitions Bf and v are
pure fluids and Ising spin systems because the Ginzburggighyy different from those of Leung and Griffitti&7] be-

Landau-Wilson Hamiltonian for Ising spin systems will beé 5,56 we have made them vanish at the critical point. The
used in our dynamic equations. In other words, to correctlyemropy per unit mass is expressed as

calculate the bulk viscosity, we need to know what variables
in f!uid systems correspond to the §p6'm_order_paramet¢r s=(pu—u—p)/pT, (2.5
variable s and the energy variable in Ising spin systems.

The latter two variables have strong and weak critical singuso the Gibbs-Duhem relatiodu= —sdT+p 'dp may be
larities characterized by the critical exponent@and «, re-  rewritten as

spectively. In fluid binary mixtures the identification of the

correct order parameter is indispensable even apart from the deo=udB+pdv. (2.9
sound mode to calculate three kinetic coefficients for the two ] ) o

diffusive modes of heat and composition. Thus this approache choice ofw as the thermodynamic potential is most
has already been taken in theories for diffusive transport ifatural theoretically due to the above relation or equivalently
binary fluid mixtures[20-23. In Sec. Ill we will derive due to the fact that the logarithm of the grand canonical
proper Langevin equations describing dynamics near the ga@artition function is the space integral ef. We may thus
liquid critical point and obtain an expression for the stressPostulate thakw corresponds to-f/kgT of Ising systems
tensor in terms ofy andm. In Sec. IV we will calculate the Wheref is the free energy density in Ising systems. This
frequency-dependent bulk viscosity using theexpansion correqundence is obwqusly exact for lattice gas models. See
method in dynamic renormalization group theory and intro-APPendix A for more discussions. There, we shall find the
duce a frequency-dependent specific heat. In Sec. V we wifiollowing exact relations among the thermodynamic deriva-
examine macroscopic adiabatic processes as applications $fes and the fluctuation variancg20,21,28,29

our theory.

.. o ap
<Pip>:W:5=kBTP2KT, 2.7
Il. THERMODYNAMICS NEAR THE GAS-LIQUID
CRITICAL POINT 5
.~ J“w Ju
A. Mapping onto Ising spin systems (e:e)= B2 B’ (2.9
We describe the critical behavior of pure fluids near the

gas-liquid critical point in terms of the mass densitfr,t) nn Pw  dp du

and the energy densitg(r,t). These two variables have {p:&)= 9vdB JB v’ (2.9

well-defined microscopic expressions in terms of the particle

coordinates and momenta. Therefore we choose them as théderew, p, andu are regarded as functions Bfand» and
fundamental variables in our theory. In this section the variK=p~1(dp/dp)+ is the isothermal compressibility. We in-
ables with the caret, such asandeé, denote dynamic vari- troduce the notation
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~ o~ - - which vanishes a®—0 in the disordered phase. But it is
<A3B>:f dr(8A(r,t) 8B(ro,1)), (210 equal to+ B[ 7|1 from ()= =B}|7|# on the coexist-
A A ence curve. Here we also introduce the specific heat at con-
whereA(r,t) andB(r,t) are arbitrary local density variables, stant magnetizatioM = (),
SA=A—(A) and 5B=B—(B) being the deviations from

the equilibrium averages. Cu=0*wl7°~ [0l dhoT]?[$*wl 9*h]

It has been assumed in the literature tlat p/kgT con- — (R — (N2 4 29
sists of a singular part and a regular part dependent on two (m: m) = Cor: M)~/ (o ). (2.20
relevant field variablesh and 7, as We will show that the constant-volume specific h€atfor a

_ single phase of fluids asymptotically correspond€jp (not
©= 0singN, 7) T Ored h, 7). (217 to Cy) in Ising spin systems.
To leading order in the critcal singularity, In fluid systems it is not obvious how to define the corre-
wsindh,7)/| 7|27 is a universal function ofr/|h|Y#+7  sponding density variableg, andm, in contrast to Ising spin

wherea, 3, andy are the usual critical exponents. The two Systems or equivalent lattice gas models. Here we stress that
relevant parametelts and  correspond to the magnetic field the postulate of Eqsi2.12 and (2.13 simply implies the

and the reduced temperatur&<T.)/T, in Ising spin sys- following linear mapping relationgl16],

tems. In pure fluiddr and 7 are related td and v in Egs.

(2.3 and(2.4) by the following linear relations: p—pc=ayp+ B1M, (2.21
h=a;v+a;B, (2.12 &—e.= a i+ B, (2.22
T=B1v+B2B. (2.13  wherep. ande, are the critical values and the coefficients

. ) aq, B1, ay, andB, are introduced in Eq42.12 and(2.13.
The coefficientsay, @,, B1, and B, will be assumed to be The inverse relations of Eq&2.21) and(2.22 read
simply constants and not singular on approaching to the criti-

cal point. In .pal’tICU|E.lI’, bgcausle=0 on the coexistence b=(a1Bo— a2B1) Y Bolp—po)— Br(E—e0)],
curve, the ratiow, /a4 is written as (2.23
J d d p _ ~ ~
() = () =T rue = (12~ o) [~ aglp—po)+ an (6= eg)].
a, B/, 9B/, It/ (2.29
(2.19

We derive these relations by requiring
Hereafter ¢---/d- - - ) is the derivative on the coexistence

curve in the limitT—T,. With this postulate we can map h;/;+ m=v(p—p.)+B(e—e.). (2.2
the critical behavior of pure fluids onto that of Ising spin

systems. It follows that pure fluids belong to the Ising uni-We may confirm that Eqs2.21) and (2.22 are consistent
versality class in static critical behavior. with the thermodynamic relations involving the fluctuation
_InIsing spin systems the order parameter denoted byariances, Eqs2.7)—(2.9), (2.16), (2.18, and(2.19, under
¥(r,t) is the spin variable, whose conjugate fieldhisThe  the mapping relations of the field variables, E512 and
free energy is an even function &f due to the inherent (2.13. It then follows that the shifted energy variable
symmetry of the system. The equilibrium average and vari-

ance ofy are thus given by (e—ec)—(az/ar)(p—pc) = (B2~ azfr/a;)m (226
M= ()= dwldh, (2195 , . , _ o _
is proportional tom and is weakly singular as in Ising spin
X:(ljhi l}>:§zw/§h2:ﬁM/§h_ (2.16 systems. Recall that the energy may be shifted agZE#g).

Thus the coefficienty, is arbitrary and may be set equal to
In Ising spin systems the energy density variable denoted b§ero from the beginning22,27. Furthermore, the relation
m(r,t) exhibits weak critical fluctuations characterized by (2.21) indicates that the average density on the coexistence
the critical exponeng(=0.1). Its conjugate field is, so that ~ curve behaves as

(My=dwl T, (2.17 p—pc=*a;B{| 7P+ B.B1| 7179, (2.27

Ch=(Mm:m)= 3wl dr°. (2.18  where the plus sign is for the liquid densjy and the minus
) N ) sign for the gas density,, and we have sdt=0, so
We measuran from the critical value andm)=0 at the
critical point. TheCy is proportional to the specific heat at =b(T/T,—1) (2.28
constanth. In particular, yo<|7|~? with y=1.25 andCy
«|7]~* ash—0. As regards the cross correlation we have with

(Y= Pwlohar= Ml aT, (2.19 b=(By— Brayla;)/KsT,. (2.29
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The coefficientsB; and B; in Eq. (2.27) arise from ap\? 19 9
Jwsing! 9N and dwgngl 37, respectively. The cross coefficient pCr=T| | Kr=kg peagl(yy), (2.37
1 gives rise to the second term in BG.27) causing singu- X

lar asymptotic behavior of the coexistence-curve diameter whereK is the isothermal compressibility appearing in Eq.

n = rhl-arq_ l-a . (2.7). To examine the right hand side (.33 we note the
(P +pg)l2= pe=p1B10" (1= T/Te) (2:39 following relation,
While a, may be set equal to zero as stated above, nonvan- .. . . . A a2 PPN Al n\2
ishing of B, can be detected from Eq2.30. B, is often  (S:S)Xp:p)—(S:p)*=(pT) “ee)p:p)—(e:p)]
referred to as the mixing parame{@2-24. =[(a1Ba— azBy) pTIAL( P by i)

B. Entropy variable and specific heats —<¢A/;: m)2], (2.39

In the literature an entropy variable, which will be de-
noted bys(r,t), has often been used instead of the energ
variablee(r,t) [1-4,17—22 In dynamics this choice is con-
venient becausg is decoupled from the sound mode at long C =(p kab?)Cu = (p keb?)(1—R.)C 23
wavelengths. In terms gf and@ it may be expressed §20] v=(p"keb)Cu=(p "keb")(1-R,)Ch, (2.39

hich follows from Eqs.(2.31), (2.21), and(2.22. Then, to
eading order in the critical singularity, we obtain

1 D where b is defined by Eqg.(2.29. Thus C,xC,,, where
§= —[é—Hp]+ —=+s, (2.30) Cw is the specific heat at constant magnetization defined by
pT pT Eg. (2.20 in the corresponding Ising spin systeR), is de-

whereH=(u+p)/p=pu+Ts s the enthalpy per unit mass. "¢ B

The coefficients in front oé andp and the last two terms are T P P

thermodynamic quantities. They depend mrand B (or h R, = (s:m)* /(g p)(m:m)]

and 7) and are not regular with respect to them near the =[P wlohar)2{[ P*wl *h][FPwl 7]}  (2.40

critical point[30]. However, the variabls has the following

merits even in staticsi) S is invariant with respect to the and is a universal function of/|h|Y(* ") Obviously, it is

shift of the energy Eq(2.2) becauseH is also shifted as non-negative-definite, smaller than 1, and vanishes on the

H+ €. (i) The variances of are related to the specific heat critical isochore abov@& .. On the coexistence curve we can

C,, at constant pressure and the specific @att constant easily checkR,—3/4 ase—0, but we estimaté&k,=0.50

volume ag 20] using Eqg.(2.43 below and relations among the critical am-
plitudes in Ising spin systeni81].

Js A
cpzT(—) =kg'p(5:8), (2.32
Jat), C. Universal numbers
Js If the mapping Eqs(2.12 and(2.13 onto the Ising spin
CUZT(_) :kglp[@;g)_<§;,3>2/<;,;;,>], (2.33 systems is correct, some combinations of the critical ampli-
at/, tudes become universal numbers independent of fluids

. ) . [23,24. For example, let us expres€, and K; as
From thg def|nA|t|.on Eq(2.3) C, may al_so be rewritten in C, /ks=A(T/T.—1)" %« and pkeTKy=T'(T/T,—1)"” on
terms ofp ande in a form due to Schofiel{i28], the critical isochore above T, and C,/kg
_ 2N/ A AN SN2 A =A"(1-TI/T,) %a and pkgTK;=I""(1-T/T.)" ¥ on the
Co=(pkeT) (&) —(e:p)/(pip)], (239 coexistence curve . The coefficiei$ andI”’ are common
which is obviously invariant with respect to the transforma-in the liquid and gas phases. The density on the coexistence
tion (2.2). See the first line of Eq2.38 below also. The first curve is expressed ap{ pc)/p.=+B'(1-T/T.)?. Then
relation (2.32 follows from the thermodynamic relation We readily find using Eq(2.28 thatAI'/eB’# andI"’ /T are
pds=(du—Hdp)/T and Eq.(A8). In the second relation independent of the parametein Eq.(2.29 and are equal to

(2.33 we have used the corresponding universal numbesy"y/aBy?=0.581
and I')/T4=0.202, in Ising spin system31], where we
Ay - ap Js write Cy=A,7 %/ a and y=Ty7 * for h=0 aboveT, and
Ay -1 i - H 0 X 0 c
(Sp)=p kBT(&T)p pkBT(a )T' (2.39 Cu=Al 7 %, x=T{|7]7?, and{y)==*By|7|? for h=0

below T in Ising spin systems. However, from E.39
If we are interested only in the most singular part, we maythe specific heat amplitudes satisfy

set 65= agy with

A'TA=(1-R,) A/ Ay, (2.4)

1/dp 1/dp
aSZP—T(az— Hay)=— ?(ﬁ> = ?<ﬁ) ay, whereAy/Ay=1.91. Some calculation shows tHat on the
h ¢ cx (2.36 coexistence curve may be expressed from E246), (2.18,

and(2.19 as

where use has been made of E214). Therefore we obtain 2y p e
strongly divergent variances, R,=aBByTAglg. (2.42
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See the sentences below E@.19 for the behavior of are universal numbers on the critical isochore abdye
(y:m) on the coexistence curve. We also introduce anothewhere§ is the correlation length. The first line of E®.48
universal numbera, defined on the coexistence curve by consisting of the quantities of fluids becomes independent of
[32] the parameteb in Eq. (2.29 and equal to the second line
consisting of those of Ising spin systems. It is known that
ai=ap’B'?IA'T'=R,/(1-R,). (243 R=0.25 at d=3 theoretically and experimentally

) ) ) ) [40,23,24. The above relation will be used in Appendix D.
This number is close to 1 and characterizes acoustic proper-

ties of phase-separating fluids near the gas-liquid critical

; . < . ) ! Ill. MODEL EQUATIONS
point. This is because the adiabatic temperature increase due Q

to a pressure variation in a sound can be different in the gas A. Statics
F;;]lse(the plus sighand the liquid phasgthe minus sighas From this section the caret gn &, ¢, and will not be

written to avoid the heavy notation. We recall that the mass
oT density deviationp—p. and the energy density deviation
:(a_p) [1+a,(C,/CyY+---]. (244 e—e, are related toy andm by the linear relationg2.21)
cx and(2.22. We can set up the Ginzburg-Landau-Wilson free
gnergy functional fory andm as[41]

(aT
ap

S

The temperature inhomogeneities thus induced give rise to
very large acoustic attenuation at very low frequencies when
the fluid is undergoing phase separatj82]. The above re- H:kBTCf dr[f(y,m)+ 3Ko|Vy|?], 3.1
lation is also important in explaining slow thermal equilibra-
tion in two-phase coexisten¢é,8,33. where
In real experiments on the coexistence curve, however,
the constant-volume specific heat has been measured mostly i, 1, 1, )
in two phase coexistend®3—34. In this case the volume f=3Tod™+ FUodf"— g+ 5= m"+ yomy~— m.
fraction of each phase adjusts to change such that the pres- 0 (3.2
sure and temperature stay on the coexistence curve. Nearthe
critical point the resultant specific heat denoted I8;,).,  Hererg, Ug, Ko, vo, andC, are the parameters dependent on
behaves as the initial upper cutoff wave numbeY,. As in Sec. Ilh and
) 7 are the two relevant field variables given in E¢&12 and
(Cpu=(1+ag)Cy, (249 (2.13, so they are independent &f,. Obviously in the equi-

which will be derived in Appendix B. We thus have the '°1uM distribution, the variable

critical behavior C,) o /kg=A(1—T/T.) ~ %/ a with 5 L
M= soH=mt yoy? =7 3.3
A= (1+ad)A =(1-R,) A" (2.46) sm''T C,

That is, the critical behavior of the so-called isochroic heatPeYys @ Gaussian distribution independent/ofin fact we
capacity, which i<C, aboveT, and C,)c belowT,, is the ~ May rewritef as
same as that o€y ath=0 in Ising spin systems. We now

. 1 1 1
obtain f= Er0¢2+ Zuozp“— h¢+ECOM2, (3.9
An/A=ALA=1.91, A'/A=0.95.  (2.47)

where
In our notationC, is the constant-volume specific heat of a —
single phase, whereas in previous experimental ref@yts ro=ro+2Co707, 3.9
used to denote@,)., below T.. We note thatC, in our — 5
i ; o Up=Ug—2Cy 5. (3.6
notation can be measured in the presence of a liGuidjas 0—*xo 070

region only, where phase separation has not yet occurred an : — : . . :
g y P P Y “@e notice that , is determined automatically if we impose

the other phase should not wet the boundary wall. As far a - . " ) .

the present author has noticed, Dahl and Moldd@af first e condl.t|on.thab- vanishes at the.cr|t|cal point. This model
measuredC,, in single phases of liquid states near the coex-Vas studied in the=4—d expansion metho_d Of. renormal-
istence curve indeed in accord with'//A~1. Brown and |z§t|on group theory41], whergd is the spatial dimension-
Meyer[33] also reported similar data in single phases, Whicha.“ty'lw'thOUtI. |OSSl/20f generality we may séfo=1 by the
are listed in their unpublished tabulation@©f . We also note simple rescalingy“s— ¢.

that the relationA’/A~1 follows even from the so-called . In the usual reno_rmali_zation group scheme, the fluctua-
linear model of parametric equation of state for flujas]. tions are coarse-grained in a stepwise manner and the rescal-

Furthermore, the two-scale factor universaligg] im- ings of the space coordinates and the order parameter are
plies thaté%wg, ’and hence performed simultaneously to obtain the fixed point Hamil-
sing

tonian. In this paper, to obtain the physical quantities directly

R§=(T/Tc—1)2/d§(ach/kB)1’d without rescaling factors, we perform the coarse graining

o d only. This approach was taken by Kawasaki and Gunton for
=77¢(aCy) (2489  dynamics[42]. Then the upper cutoff wave number is
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decreased from the initial valugy. WhenA becomes of the 1

order of the inverse correlation length !, the fluctuation g* :§€+ Ty (3.149
contributions can eventually be treated within the usual nor-
mal perturbation scheme. The parameters in the m@&i#l
become functions oA and will be written ag (A), r(A), v¥X=—€+.--. (3.19
u(A), K(A), y(A), andC(A), whose initial values are,,
ro, Ug, Ko, 7vo, and C,, respectively. In the region

— 2 _AE€ ¢ H
£ 1< A<Ay we have the following asymptotic power law: Thereforeu(A)~ y(A)“C(A)~A< to first order ine for

ETl<sA<A,.
F(A)=T(A)=2C(A)y(A)7~A2" 7"V (3.7 The C(A) tends to the specific hedl, of Ising spin
systems as\ — 0. Its differential recursion relation is
The other coefficients behave as

J
U(A)~A€27, K(A)~A"7, ~A T C(A)=20(A)C(A). (3.18

A (etalv)2— _A—alv
Y(A)~A o CA)=A . (38 Settingv (A)=v™* yields the asymptotic behavior,
wherea, v, and » are the usual critical exponents. The re- N
lation (3.7) is consistent with the power laws f@(A) and C(A)~A~2", (3.17
y(A) from the exponent relatiomd=2— «. The exponent . ) )
7 is of ordere? and is very small, so we may be sgt0 A§1A is decreased dqun to the _|nver§e1 correlatlo/n !ength
andK(A)=1 in rough estimates. In addition; should not ¢ the well-known critical behavio€(¢™ ") ~Cy~ £ is
be confused with the shear viscosity. It goes without sayin@Ptained with[41]
that, whenA becomes smaller thafi %, the fluctuation con-
tributions are no longer significant and the parameters in

/Eﬁvsgﬁn and (3.8 stay on the order of the values at which holds to first order ir. The fixed point value™* will

appear in the bulk viscosity as an important coefficient in the
next section. From Eg$3.9) and (3.11) we also notice the
relation v* =K4/(472£9Cy), which is consistent with the
following e expansion ofR; in Eq. (2.48 of the two scale
factor universality{31,39-41],

v*=al2v, (3.18

We have introduced (A) to check exact scaling rela-
tions valid to all orders ine. For example, we obtain
r(A)=1/y=K(A)¢ 2 for A<& L. We note thatr (A) is
small for smalle andr(A)=2C(A)y(A)7 from Eq. (3.7)
for A<& 1. Thus we may calculatey(A) for A<é 1,
which will be written asyg. Particularly on the critical iso-

chore above T, (or h=0 and 7>0), we set Rgz Kd(i* 1+ Ee +0(€?). (3.19
E=&(TIT,—1)"" and7=b(T/T.—1) to obtain 4v 3
yr=(TITs—1)""(2bg2Cyy). (3.9 Furthermore, we should note that the approach(df) to

v* is slow or the correction to the power law behavior Eq.
Here &, is a microscopic lengthy is defined by Eq(2.29), (3.16 is not small as demonstrated by Siggia and Nelson
y=1.24 is the usual critical exponei@, ;= C(0) is the spe- [41]. That is, in the regiort '<A<A,, Egs.(3.12 and
cific heat at constant magnetic field defined by E18,  (3.13 are solved to give
andK(A) has been replaced by/&) 7. . . " "
It is convenient to introduce the following dimensionless v*/v(A)=1+(g*/g0) " *(3go/2vo—1)(A/Ay)

numberg41], ~C(A)AR, (3.20
— 2A€

9(A)=[Kau(A)JTK(A)"A, (3.19 wheregy anduv are the initial values ak = A 4. The correc-

tion of order (A\/A)<” in Eq. (3.20 gives rise to the back-

ground heat capacityC,, where Cy is expressed as

where K= (2m) %2792/ (d/2). Sufficiently close to the CH=AoT “/a+Co. However, it cancels to vanish in the
critical point (or for smallro) g andv are known to tend to  ProductC(A)y(A) in Eq.(3.7) as ought to be the case. As a
fixed point values ag is decreased. In fact their renormal- result this product deviates from its asymptotic behavior Eq.

ization group equations to leading orderdrare _(3'7) only b_y (A/Ao)® as W?” asg—_g*. In this paper we are
interested in the leading singularity and neglect transient be-

v(A)=[Kgy(A)’)C(A)VIK(A)?AC],  (3.1D)

A J 02 a1 havior such as in Eq3.20 for simplicity.
A 9= €9-99°%, (3.12
B. Dynamic equations
d In constructing dynamic equations we chogsee, and
A — = _ _ 2 i
A EY N 6gv—2v~. (313 the momentum density as the fundamental gross variables.

We believe that the choice of the entropy and the pressure as
The stationary solutions of Eqé3.12) and(3.13 give fixed the gross variables from the starting point is misleading. The
point values as\ —0, velocity field is defined by
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1 ) 8
v=;J. (3.21) =Cq 5‘//7-{4— C, BmH (3.29
The kinetic energy in the system is then where(p) andu are the equilibrium averages of the mass
and energy densitie@Note that the average mass density has
HK_j dr= pv _j dr_JZ (3.22  been written ag in Sec. I). They may well be replaced by
2 the critical valueg. ,e. as well ag in Eq. (3.29. Here'H is

regarded as a functional @p and e on the first line of Eq.

These three variables are conserved quantities and are go > daf | d h dline. U
erned by nonlinear Langevin equations with Gaussian nmse% 9 and a functional ofj an mon the second line. Using
gs. (2.24 and (2.25 the coefficientsc; and c, are ex-

pressed as
5p=—V-J, (3.23
C1=(p)(B2—HB)/(a1B— azB1), (3.30
d ,OH
8=~V I(etpul+ ATV ——+0, (329 Co=(p)(—artHayl(aBo—aBy), (33D
P where H is the enthalpy per unit mass. We note that
3=~V (pov)— V- 11 + 9oV the deviations év, 6B, and Sp are related by
ot Sp=kgT{p)(Sv+HSB). Furthermore, using Eqgs(2.12
2 and(2.13), c; andc, may be rewritten into more convenient
| ot 1= 5| 70 V(V-v)+& (3.25  forms,
In Eq. (3.249) the pressur@ may be replaced by its equilib- =(kgTo)~ 1(ap) , (3.32
rium average £p., p. being the critical pressureear the dh

critical point since its fluctuation is small as compared to that

of e. The\, is the background thermal conductivity because . [dp ap

&Hl/ de is the fluctuation part of the temperature divided by C2=(kgTc) (aT) =(kgb) - ((ﬂ-) (3.33
T. [see Eq.(3.36 below]. The 6(r,t) is the random source h

term characterized by whereb is defined by Eq(2.29. In Eq. (3.33 the derivative

(B(r,0)6(r' 1)) = —2kBT§)\OV25(r—r’)5(t—t’). at constanh may well be approximated as that on the_ coex-
(3.26 istence curve. On the other hand, the second fluctuation con-
tribution I1;; is given by

>
In Eq. (3.25 II is the reversible stress tensor arising from

the deviations ofp and e, while 7, and {, are the back- [5¢—H+ om H—kBTC(f+%|V¢|2)}5ij
ground shear and bulk viscosities, respectively. The random 5y
source fieldg(r,t) is a vector and satisfies I
+kgTe— —, (3.39
2 (?Xi &Xl
(Gi(rHg(r,t"))= _2‘ 708 V2+| Lot | 1- a) 770}

wheredy= y— () andSm=m—(m) are the deviations and
J 9 we have seKy=1. This form(but without Sm&H/ém) has
ﬁ—xlg}cs(r—r )o(t—=t'). (327  already been knowr43]. The first term of Eq.(3.39 is

! diagonal and is generally much smaller thdp; near the

The noise re|ation$3_2® and (327) are examp|es of the critical point, while the second term of E(:S34) can be the

so-called fluctuation-dissipation theorem. Obviously, we ob-sole off-diagonal contribution giving rise to the weak shear
tain the usual hydrodynamic equations of one componeritiscosity anomaly near the critical point. Recently, however,
compressible fluids far from the critical pointﬁ in Eq. considerable attention has been paid to rheology in two

. . phase states of near-critical fluids, in which the second term
(329 is replaced byp, p is regarded as the usual pressureﬂf Eq. (3.34) behaves like & function at the interfaces and

dependent on space and time, and the noise terms are om . e I . .
ted. glv(;ashnse to S|Ign|f|cant cg[ntributlons to the shear viscosity
; ; ; and the normal stress effelet4].
In Appendix C the reversible stress tensor will be shown .

bp In Eq. (3.29 the divergence of-11I;; appears as the force

to be of the form density acting on the fluid. It has a rather simple form,
The fluctuation contribution in the first term is diagonal and —v-II= _pv5_p_(e+ PVse

5 =—Vés 6V5H 6V5H 3.3
Pr=(p) 5 H+ U+p)—H = Pf— ://59,/ mv-—. (339
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Folk and Moser have obtained essentially the same expresrhereJ,, is the x component ofl,. Indeed the above for-
sion as Eq(3.39 for binary fluid mixtures[21], where the mula with Eq.(3.38 was the starting point of the mode
entropy per unit volume is used instead of the energy deneoupling theory. On the other hand, tke component of the

sity. stress tensofl;; is written as
Similarly to the pressure fluctuatiofp;, we may intro-

duce the fluctuating part of the temperature b J J
P P d (10 =KgTe Z0(r.0) || Zou(rD)]. (34D
— - 4| _B1 9 g
oTy=Tc.oH/ 6e=(kgb) ~| — — —H+—-—H|. The renormalized shear viscosity is written in the correlation
aq 6(70 5m

(3.36  function expression as

The equilibrium fluctuation of the above quantity will be = oot (KaT 71J'°° f i i
examined at the end of Appendix A. This expression allows 'R 70 (keTc) 0 dt ] dr(TLy(r,)11(0,0)).

us to calculate the effect of the bulk viscosity on the tem- (3.42
perature deviation in nonequilibrium situations as will be . . i o
shown in Sec. V. The original mode coupling theory predicted a logarithmic

We note that Eqs(3.23—(3.25 are stochastic equations divergenceng/7o~In(¢Ao), while the dynamic renormaliza-
and that the equilibrium distribution functional tion group theory yielded a power law form with a small
exd — (H+ Hy)/kgT.] is the stationary solution of the cor- €xponent as will be shown in E€3.51) below.
responding Fokker-Planck equation. This is surely ensured Kawasaki and Guntoif42] showed that the mode cou-
by the reversible terms i113.239—(3.25. Equivalently, we pling theory may be formulated in general spatial dimensions
can confirmd(H+ Hy)/dt<0 in the absence of noises and for various systems. It yields the same results as those from
externally applied flow field, where the equality holds only the dynamic renormalization group thed# to first order in
in homogeneous equilibrium. This property is equivalent to€- The predictions of the mode coupling theorydat 3 and

the usual statement that the entropy production rate is norfhose of the dynamic renormalization group theory to leading
negative definite in nonequilibrium states. order ine are surprisingly close for classical fluids. The rea-

son for this agreement can be traced to the fact that the shear
viscosity anomaly is very weak in near-critical fluids. Here-
after we will briefly summarize Kawasaki and Gunton’s re-
The critical fluctuations of the entropy are known to besults, because the same approach will be taken in Sec. IV for
convected by the transverse velocity (which satisfies the bulk viscosity. As in Sec. Ill A on statics, let us decrease
V-v, =0). Consequently the dynamics 86 is governed by  the upper cutoff wave numbet of the fluctuations and ex-
the hydrodynamic interaction and the thermal diffusivity atamine how the kinetic coefficient(A) and the shear viscos-
long wavelengths dé<1) is given by the well-known ity 5(A) are renormalized in the expansion scheme. To

C. Thermal conductivity and shear viscosity

Einstein-Kawasaki formulfl] recover the results in the literature we introduce
_ Koo (337 L(A)=keh(A)/ (peas)? (343
6mnRE’ '

whereqg is defined by Eq(2.36). The thermal diffusivity in

nr being the renormalized shear viscosity. This formula isthe long wavelength limit is then
one of the main results of the original mode coupling theory. B _
On the other hand, the transverse velocity is only weakly D=Ar/pCp=Lr/x, (3.4

affected byss through the last term of Eq3.34) as will be where\g and Ly are the values ok (A) andL(A) in the

shown below. , renormalized limitA—0 andy is the variance ofy given in
From Eq.(3.24) the reversible energy current turns out to Eq. (2.16. It is known that the dimensionless number
beHJ whereH = (u+p)/p=(u+p.)/p is the fluctuating en-
thalpy. Its nonlinear part with respect to the gross variables is f(A)=kgTKg/[K(A)p(A)L(A)A€] (3.495
then
tends to a fixed point value as is decreased at the critical
Jo=T.(55)J, (3.38  point[4]. To first order ine=4—d, Kawasaki and Gunton’s
results read

because
d 3
1 —ASTLA)= skeTKa/ln(A)AS],  (3.48
SH=T8s+ = op=TSés. (3.39
g 1
J
The renormalized thermal conductivity is thus expressed for- —A (M) = 57KeTKg/[[LIA)AC] (347

mally as[45,]1]
In deriving these equations the fluctuations in the thin shell
Ao=Ant (KaT2 —1f dtf dr(J.(r.)J..(0,0)}, region A— SA<q<A are assumed to obey the Gaussian
=0t (keTc) 0 "(Jed1,1)3e{0.0)) distribution and to relax exponentially with the rate
(3.40  L(A)A“ Thenf(A) obeys
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9 19 ) For a small amplitude sound varying as exf{x+iwt),
—A T A)=ef(A) = 5, (A% (3.489  the dispersion relation is of the form
2_ 2
As A—0 we obtainf(A)—f* with k®=pKS (@)%, (4.3
24 whereK? (w) is the frequency-dependent, complex adiabatic
fr=1get (349  compressibility defined by
— 2
Therefore, we find the asymptotic behavigqrA) ~ A~ and Ks(0)=1Upc*+inlz(w)]. (4.4

~ —X 1
7(A)~ A with Obviously K% (w) has the following physical meaning. Let

18¢ long wavelength pressure and density variations be ex-
XW=ggt (3.50  pressed as  op=Rdpexp(ikx+iot)] and
op=R{ piexp(ikx+iwt)] in a sound. Then the complex
amplitudesp, andp, are related by

p1/p=Kg(w)p1. (4.5

8S|n the low frequency limit we obtain the usual adiabatic
compressibilityK=p~1(dp/dp)s.

Next let us express the sound speed(1/pKJ)Y? in the
low frequency limit in terms of the constant-volume specific
heatC, by the thermodynamic identity

€
Xy=€=n=X\=ggt (3.5)

The renormalized kinetic coefficients behave
Lr~Ag~ &9 and 7~ £91° to first order ine. It was
shown generallyf4] that the relationLgng~ £~ 7 holds to
all orders ine. The entropy fluctuations with wave numbers
of order&~* have a very slow decay rate,

T,=Dé2=Lgpé 2x~E%, (3.52
p%c’C,=T

| o @)@%. 49
wherez is the so-called dynamic critical exponent. We have aT) \dT o
foundz= 3 in the mode coupling theory dt=3 as shown in
Eq. (3.37 and z=4—18¢/19+--- in the e expansion Here @p/dT), and @p/dT)s=(dp/dT),/(1—C,/Cp) both
scheme from Eq(3.50. tend to @p/JT).4 near the critical point, so that we find the

We have discussed the asymptotic behavior of the kineti€ritical behavior

coefficients. We note that it is important to extend the theory 5
into the nonasymptotic critical region in pure fluitk9,46. CZZT(‘?_F’) C, ~galv @.7)
Also in binary fluid mixtures considerable efforts have been PE =TT o P ' '
made on the crossover from the pure fluid behavior to the

mixture behavior near the gas-liquid critical poj20-23. In calculatingZk () we must carefully take into account
of the strongA dependence of(A) as shown in Eq(3.8).
IV. BULK VISCOSITY AND FREQUENCY-DEPENDENT In particular, forA<¢~ ! and on the critical isochore above
SPECIFIC HEAT T., we have found Eq3.9) for yr, which is the renormal-

ized value ofy(A). Then in the hydrodynamic regime\(
=<¢&71) on the critical isochore abovE,, the dominant non-
We can show that a nonlinear part 8p; in Eq. (3.29 linear pressure fluctuation is expressed as
gives rise to a strongly divergent bulk viscosity. The domi-
kg T )(aT (¢2
CX X

nant nonlinear term is given by
Pa(1) =Ko TCoyou(r,1)2 (4.3 T=TelAop

The first termc, M/ 8 in Eq. (3.29 is very small near the Wherey is the variance ofj defined by Eq(2.16). As far as

critical point. It is a general aspect valid in many near-criticalth® most singular term is concern;cjzﬁ/x in Eq. (4.8) may

systems that the field variabléH/ sm relaxes slowly in a Pe_replaced by (8s)%/C,, or (6p)7/(kgTp“Ky) from Eq.

sound and gives rise to enhancement of acoustic attenuatioff-?) Of EQ.(2.32. We note that essentially the same expres-

The resultant frequency-dependent bulk viscosity is writterSion can be derived from general thermodynamic relations
in the time correlation function expression, (A11) and (A12), which was indeed used in Kawasaki's

theory[13] as will be discussed in Appendix D.
1 (= N It is easy to check thalk(0)~ & dyr2x 2T .~ & 9" at
&r(w)={ot kB_Tfo dtf dre™"“(3py(r,t) 8pri(0,0)), w=0 from the fluctuations with wave numbérin the hy-
¢ (4.2) drodynamic regiorg< £~ 1. Here the first factog ™9 is the
volume of the wave number regiog€ ¢ 1) and I'; is the
where 8p,, is the deviation. We assume that the acousticentropy decay rat® &2 given in Eq.(3.52. We shall see
wave numbetk| is much smaller than the inverse correlation the following simple scaling relation in the low frequency
length ¢, but the acoustic frequency can be either limit,

smaller or larger thai', . Hereaftero will be assumed to be . ,
positive. {r(0)=Rgpc/T, 4.9

A. General relations

2

Pnir=pC : (4.8
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where the coefficierRg is a universal dimensionless number
to be calculated later. The attenuation per wavelength is

ay=mol{(0)/pc?=mRgw/T ;. (4.10

B. Calculation at small €

As in Kawasaki and Gunton’s theof#i2] we gradually
decrease the upper cutoff wave numieof ¢y andm. When
the fluctuations with wave numberin the thin shell region
A—SA<qg<A are coarse grained, their contribution to
pn(r,t) should be regarded asrandompressure. Its zero
wave number component is of the form

05 ke ToCoy(A)(2) 0 f dquepq, (411

where the integral is in the regioh— §A <g<A. From Eq.
(4.2) the incremental contributiod* (w,A) can be calcu-
lated if ¢,(t) is assumed to relax exponentially in time. In
the limit SA —0 we obtain

i

2%
(4.12

whereS, is the structure factor &= A andI’, is the decay
rate atq=A. We next simplify the right hand side of Eq.
(4.12 using the following steps. First, we set

e

—A— *(w,A)=kgT, cdey(A)zAdSZ/

K(A)Sy=1[& 2+ AZ?]. (4.13

Second, we assume that the dimensionless paraméter
defined by Eq(3.12 is equal to the fixed point valug* for
Ao>A>¢ 1 Third, C(A) is scaled as

(4.19

From C(0)=Cy and Eq.(2.39 we have in the long wave-
length limit

C(A)=p; *kgh?C(A),

Cc(0)=(1-R,)'C,, (4.19

whereC, is the constant-volume specific heat a@Rgdis de-
fined by Eq.(2.40. Note thatC(0)=C, only on the critical
isochore abovE .. Now Eq.(4.12 may be rewritten as

ap
ﬁ) U(A)A4/

{CTA)@%AZ)Z

T,
—A— *(w,A)= (

i
FA+ Ea)

(4.19

Integration of this equation yields
Te[ap\? (= —
§§<w)=—°(—p) JdAv(A)M/[cm)(ézmz)z
pec\dT xJ 0

i
X FA+_

5 (4.17)

O]

where the background part is omitted.
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With Eq. (4.17 we notice that we can introduce a
frequency-dependent specific h&t(w) by

1CH (w)=[1+i wlk(w)lpc?iC,

! an
C—U'i‘l(x)0

v(A)A3
X

— (4.18
C(A) (£ 2+A%?

|
FA+ E(J))

The first term is the zero-frequency limit and the second term
arises from nonvanishing. The frequency-dependent adia-
batic compressibility defined by E¢4.4) is simply propor-
tional to C} (w) in the scaling limit as

2
K;‘(w)=T_1(ﬂ) pCH(w). (4.19

p

From Eqg.(4.3) the dispersion relation is expressed as

2
) / p2C;’(w).

We may equally us&? (w) and C; (w) because they are
related by the simple relatiod.19. In the following we will
useC; (w) to directly check Ferrell and Bhattacharjee’s pre-
diction.

Jp

0T (4.20

2/k2 (

1. Low frequency limit

In the low frequency limitw<I"; Eq. (4.18) surely yields
the scaling form(4.9). The coefficientRg in Eq. (4.9 is
expanded in powers of as

1+
ﬂe

RBE%U*(l—RU) ( (1-R,). (4.2))

The frequency-dependent specific heat behaves as
-] (4.22

Unfortunately the second order term &nis not small in
Rg. In Appendix D we will show that the mode coupling
theory[13] [or use of Eq(4.8) in three dimensiondeads to
Rg=0.27/r on the critical isochore abové&., which is
about two times larger than our value to first ordekirSee
Appendix D for more details. In future experiments it is very
informative to directly check the simple scaling behavior
(4.9 or (4.10 rather than using Kawasaki's original expres-
sions[47,48.

Using a dynamic model similar to that of R¢1.7], Den-
gler and Schwablgl8] calculated the critical amplitude ratio
a, la_ for the sound attenuation above and belbwin the
low frequency limit to be A’/A)Y22¢%"% to first order in
€. They have then estimated it to be about 5 in three dimen-
sions using the incorrect valWe /A=2 [see Eq(2.47)]. Our
theory yields A'/A)¥22"%(1+a2) to first order ine, a, be-
ing defined by Eq(2.43. The ratio is estimated to be about
5\2~7 in our theory.

C*(w)=C,[1-Rgiw/T +--



‘2. High frequency limit

In the high frequency limitw>I",, we calculate Eq.
(4.17) replacingu(A) by v* and the lower limit of the inte-
gration by & 1. Further we seté& 2+A%=A? and
I' y=I"* A% and transform the second term of £4.18 into

i fw da v’
N T[T A (112) 0]

11 1
C(A*) c(¢h]

*V
=Zv" —

a

(4.23

Use has been made of the behav@fA)=C* A~ *'», C*
being a constant. The contribution from the regibrc ¢!

is of orderv*/C,, and is very small. We introduce a complex
wave numbeA* defined by

A* =(iw/2I'*)Y2, (4.24

Therefore,

C(A*)=C*(iw/2l'*)” *"2xexp —imalvz). (4.25

In Eq.(4.23, 1/C(A*) may be readily obtained if we change
A tox=A/A* and take the integration path of reglwhile
1/C(¢7Y) arises from the integration of the region
A~ ¢ 1<|A*|. Further we find 2* v/a=1 from Eq.(3.18
and transform Eq(4.18) into

1 ~1(
Ci(w) C*

iw

alvz
v
2F*> T

v

(4.26

The Bhattacharjee and Ferrell resi5] follows on the
critical isochore abové . or for R,=0, where
C*(w)=C*(iw/2l'*) "2, 4.27

Thus on the critical isochore abovke, the sound velocity
weakly depends o as

(4.28

C(w)EC(W/ZFS) al2vze o al2vz.
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3. General behavior on the critical isochore

To examine the behavior of general let us limit our-
selves to the critical isochore aboVe for simplicity. There,
the ratioC, /C}; (w) is a universal function of

{=iwl2l, (4.3
and is analytic in the upper complex regiondm0. Its nor-

mal € expansion may be expressed &,/C}(w)
=1+v*F({)+--- with
1/3 1

1 1
E(l——)lnﬁx 5—2—§)In(
(4.32

¢
whereA = (1-4¢)Y2 In accord with Eqs(4.21) and(4.25
we find F({)=3¢ for |Z|<1 and F()=3Inz—1
+3im/2A+ - - - for |{|>1. To recover Eq(4.25 we should
exponentiate the logarithmic factor, so we obtain an expo-
nentiated form,

1+A
1-A

F(O=-1+

C,/CH (@)=(1+ )" 1+v*[F(¢)— tIn(1+ )1},
(4.33

This expression holds only in the scaling limit in which
&M o—0 with w/T'; held fixed. Kroll and Ruhland17] de-
rived an expression of the frequency-dependent adiabatic
compressibility essentially equivalent to B¢4.33 [Eq. (5)
of their first papef and confirmed that the above scaling
function agrees well with the data of Roe and Mej48].
Some further calculations show tHa¢Z) — 3In(1+¢) is neg-
ligibly small for o<I'; and behaves as-1+(37/8)(1
—i)(2l ¢/ w)¥?+ - - - for w>T;. Thus we obtain
a’)\:(77261’/2VZ)[1—3(F§/2(1))1/2+ <] (4.349

in the high frequency regime and heneg slowly ap-
proaches the universal val@.29 even in the scaling limit.
Moreover, we should not forget the fact that the slow tran-
sient behavior ob (A) andC(A), which is neglected in Eq.
(4.33, will give rise to significant corrections to the asymp-
totic behavior.

Now we display the scaling behavior derived from Eq.

and the attenuation per wavelength tends to be a universif-33- We seta/»z=0.057 and* =0.114 in Eq(4.33 and

number,

(4.29

Bhattacharjee and Ferrdll5] claimed that data ofHe by
Roe and Meyef48] exactly supports Eq4.29, which will

ay=7lal2vz.

plot c(w)/c—1 and «, in Figs. 1 and 2, respectively, as
functions ofw/2I';, where

c/c(w)=Rg+C,/C¥(w)],

ay=27Im[\/C,/C*(w)]/R4 \/C,/C*(w)]. (4.36

(4.39

also be shown in Fig. 2 below, and that data of other fluids

may be fitted to a more general formula that takes into actn the figures we also show data of Roe and Mdyk] for
count the background heat capacity. See the sentences beldge on the critical isochore at 1 MHz, where we have set
Eq. (3.20 for the background heat capacity in the renormal-p = kg T./6mnré=5.6X10"°X (T/T,—1)” cm?/sec and
ization group scheme. However, near the coexistence curve=2 x 10 8x (T/Te—1)"" cm from Table | of Ref[49].
R, is close to 0.5 and the second term of B426) can be  The agreement is satisfactory in view of the fact that the
important. ForR,#0 we have scaling functionF(¢) in Eq. (4.32 is obtained only to first
order in e. Note that a, from (4.36 behaves as
a)\’i(ﬂ'za/ZVZ)/ m(al2vz)wlT ; at low frequencies. The data of R¢#8] at

+ low frequencies thus indicateRg= «/2vz=0.029 on the

® —alvz
=R, (f’f) } (430
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FIG. 1. c(w)/c—1 vs w/2I'; on the critical isochore above,
obtained from Eqs(4.33 and(4.35 on a semilogarithmic scale. It
is compared with the data of R4#8].

critical isochore abovd . for the universal numbeRg in

Eqgs.(4.9) and(4.10. This value is about 70% of the value to
first order ine in Eq. (4.21).

C. Slow relaxation of stress correlation function

Finally we examine the slow relaxation of the stress time
correlation function, whose Laplace transformation gives the

frequency-dependent bulk viscosity. In H¢.2) the second
term is the dominant contribution in the slowly decaying
part. Let us examine the explicit time dependence of

Gxx(t) = (kBTc)ilJ' dr(‘sHXx(r!t)‘SHxx(o! O)>

=(ksTo) [ AH(pu(r05D4(0.0)), (4.3

which is the inverse Laplace transformation of E17). In
the time regionl',t<1 we obtain a strikingly slow relax-

ation,
l9p 2 Tc *4+\—alvz 2 —alvz
GXX(U:(E)CX(PC?)(ZF t) =pc(2I ;) ,
(4.38

03 T T T T T T
0.25 4
02 b ¢ 1
@y 015 - 9 —

0.1
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1 2
logio(w/2T')

FIG. 2. ) vs 0/2I'; on the critical isochore aboVE; obtained
from Egs.(4.33 and (4.36 on a semilogarithmic scale. It is com-
pared with the data of Ref48].
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where C*=C(A)A*” andT* =T'(A)A ~? are the critical
amplitudes. Notice that E¢4.38 holds for time scales much
longer than microscopic times. On the other hand, in the time
region I'.t>1, the hydrodynamic wave number region
A< ¢ 1 gives rise to an algebraic decay,

Gux(t)=pc?*I'(d/2)(2T )~ 42, (4.39
wherel'(x) is theI” function. This tail is of the same origin
as that of the so-called long time tail first found in computer
simulationg 50]. We note that this tail can be derived readily
from Eq. (4.8). Corresponding to the presence of the hydro-
dynamic long tail Eq.4.39 the frequency-dependent bulk
viscosity behaves singularly in the low frequency limit
o<I';as

{&(@)=(pC?IT ){Rg—[mv*/2sin(em/2)](i /2l ;)1 ~ 2

+ .. } (4.40

V. EFFECT OF THE BULK VISCOSITY
ON MACROSCOPIC HYDRODYNAMICS

Let us consider a nonequilibrium situation with hydrody-
amic disturbances varying very slowly in space compared
with the correlation length. However, their time scale can be
shorter than the average lifetime of the critical fluctuations
1T ;. Hereafter the averages over the thermal fluctuations
will be written asép, ds, op, and 8T, for the deviations of
density p, entropys, pressuresp;, and temperaturéT;,
wheredp; and T are defined by Eq$3.29 and(3.36). For
the pressure deviatiodp the usual thermodynamic relation
is modified by the frequency-dependent bulk viscosity. For
sinusoidal disturbances we obtain

n

5Hr,t)=<(;—z) ss(r,t)+[c2+iwls(w)/p]dp(r,t).
! (5.0

For general time dependence we have
_ ap\ _
5p(r,t)=(%) 5s(r,t)+c26p(r,t)
p

g 9
07 [ Gttty (62

where use has been made of the stress correlation function
G,,(t) in EQ.(4.37). The relation(4.5) holds in the adiabatic
case ¢s=0). o

Then we are interested in hodT is influenced by the
frequency-dependent bulk viscosity. Since the non-
Markovian part of ST arises froméH/ém, the definitions
(3.33 and(3.36 indicate that it is equal to that afp mul-
tiplied by (dT/9p),[=dT/dp)cd, h being defined by Eqg.
(2.12. We propose the following simple relation:

ST(r,t)= & IS+ (5.3
p

&T) So00.0)
— rt).
ap/ P
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Here we have replaced{/dp)y by (dT/dp)s, whose dif-  spherical cell, the relation&.8) and (5.9 still hold if L is
ference is at most of ordeC,/C, on the critical isochore interpreted as//A, whereV andA are the volume and the
above T.. This is because dp/dT)s—(dp/dT),  surface area of the cell.

=p2((9$/r9T)h/((7p/r9T)p~CU/Cp on the critical isochore

aboveT,. However, on the coexistence curve beldy; the B. Density change in a fixed pressure

difference is of orderC, /C,,)? as shown in Eq(2.44) and

cannot be neglected generally. As the second example we change the pressute-t

infinitesimally fromp to p+p; in a stepwise manner and
_ _ ] . keep it constant at later times. We follow the time develop-
A. Density change in the fixed volume condition ment of the density changesg);,(t) far from the boundary
Let us suppose a near-critical fluid on the critical isochorewhere the entropy is unchanged. From Egj1) we obtain
aboveT, in a container with a fixed volum,8] and oscil- A
late the boundary temperature as (8p)in(t) =K(t)py/c?, (5.10

S6Tp=T,cog wt) (5.4  where the relaxation functioI:i(t) is related to the complex
adiabatic compressibility in Eq4.4) by
in the following frequency range,

” —iwtp _ 20 * :
D/L?<w<c/L, (5.5) JO dte "'K(t)=pcKs (w)/iw

whereD is the thermal diffusivity and. is the length of the =pc’{lio[pc’+inlg(o)]}. (5.1)
container. The pressure deviatiop may be assumed to be i ) i i
homogeneous throughout the container whenis much ~ BY taking the inverse Laplace transformationktf (w)/iw
smaller than the inverse acoustic tiré, so that we obtain a very singular short-time behavior,
_ % ~ alvz

Sp=(aplaT) ( 5T), (5.6 K(t)=(2I' )", (5.12
_ which holds forl" t<1. ForI' t>1 the long tail Eq.(4.39
where(dT) is the average over space. Furthermore, from Eqappears as
(5.5 the entropy deviation is nonvanishing only near the .
boundary wall, K(t)=1—v*I['(d/2)(2l &) 42+ .. .. (5.13

SS0r 1) — i ID Thus @p)iy(t) increases from 0 very steeply as Eg.12) for
os(r, ) =Asexp = x\iw/D), S I';t<1 and approaches to, /c? slowly as Eq.(5.13.
wherex is the distance from the wall. The thickness of the
thermal diffusion layer isD/w)? and is much shorter than VI. SUMMARY
L from Eq.(5.5). The coefficientA; can be calculated using
Eqgs.(5.4), (5.6), and(5.7). In the one-dimensional geometry
in Ref.[7] some calculations show that the density deviatio
is expressed as RE&p)i.expiot)]=[Re(dp),]coswt)
—[Im(Sp)i,]sin(wt) far from the boundary, where

J
pTl/
p

We summarize our main results. In Sec. Il we discussed
the logical consequences of the mapping relati@s2 and
n(2.13) of the field variables. In our Ginzburg-Landau ap-
proach the mapping relatiori®.21) and(2.22 of the density
variables are most crucial. We have introduced the entropy
variable as in Eq(2.3) and have found the exact specific
[pc? heat relationg2.32—(2.34). The C, for fluids is asymptoti-
cally proportional to the specific he&}, for Ising spin sys-
tems defined by Eq2.20 and is related t&€ by Eq.(2.39.
+iw{§(w)]], (5.9 Thgn we haye found t_he presence of thPT facterR], in the
critical amplitude relation2.41), whereas it does not appear
in the relation(2.47) for the specific heat,), in two phase
¥s=C,/C, being the specific heat ratio growing as coexistence. In previous experiment,f., has been mea-
(T/T¢—1)"7"* on the critical isochore abovE,. The den- sured, leading to the conclusion that the specific heat ratio
sity deviation thus becomes out of phase with respect to theoincides with that ofC,, at h=0 in Ising spin systems.
boundary temperature oscillation due to the piston effect angiowever, ifC, is measured close to the coexistence curve in
the frequency-dependent bulk viscosity. On the other hand, ifhe presence of one phase only, the relafidmA=1 should

L
1+—\iw/D
27s

(5P)ingp((9_-|-

, (5.9

Eq. (5.3 is assumed, the temperature deviation in the interiohe obtained37]. An alternative method will be to measure
region is not affected by the bulk viscosity as the sound speed in the low frequency limit on the coexist-

L ence curve, which will give information &, on the basis of
_ T Eq. (4.6). On the other hand, the two-scale factor universality

(ODin=Ty / l+2_'ys /D relation (2.48 readily follows in terms ofC, from the map-

ping relations(2.12 and (2.13.

which is of the same form as in R¢f]. We are interested in In Sec. Il we introduced the Ginzburg-Landau-Wilson
the frequency dependence and imaginary part of the abovdamiltonian(3.1), which can describe the strong singularity
guantities. In other geometries such as a rectangular af the order paramete¢ and the weak singularity of the
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energy variablem. Then we have presented the dynamicsuch two-phase states was already calculated in[R2f.
equations(3.24—(3.26. They have been derived generally
from the conservations of mass, energy, and momentum and ACKNOWLEDGMENTS

are natural extensions of the usual hydrodynamic equations .
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presented the complete expression for the stress tensgr
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energy d(_ansmes. The expression for the tempergture fluctu%r informative discussions.
tion &T; is also given in Eq.3.36. We have briefly re-
viewed the critical dynamics of the entropy and the trans-
verse velocity in the mode coupling theory and the dynamic
renormalization group theory. We first give some exact thermodynamic relations, which

In Sec. IV we have identified the nonlinear pressure fluc-are valid even away from the critical point. To derive them
tuation(4.1), whose slow temporal relaxatigexplicitly cal- ~ we consider the grand canonical distribution of pure fluids
culated in Eqgs(4.38 and(4.39] gives rise to the anomalous With slowly varying temperatureT(r)=T+ 6T(r) and
frequency-dependent bulk viscosit§(w) defined by Eq. chemical potentiau(r) = u+ su(r),

(4.2). It may be transformed into the integral for(.17). 1 1

The frequency-dependent adiabatic compressibKity( ) p|oca|=:,—eXp[ —f drF[é(r)—,u(r)fJ(r)]].

and specific heat}, (w) can be naturally introduced by Egs. —local eT(1) (A1)
(4.4), (4.18, and(4.19. TheC} (w) behaves as E¢4.22) in

the low frequency regime and as E¢6.26) and(4.27) inthe  where E,.5 is the partition function in local equilibrium
high frequency regime. The Ferrell-Bhattacharjee form[51,20,2]. As in Sec. Il quantities with the caret will denote
(4.27 is valid on the critical isochore abov&., but dynamical variables with molecular expressions. We neglect
C; (w) is more complex on the coexistence curve as showthe time dependence of all the quantities, so the time variable
in Eq. (4.26. We have also given the explicit expression for t will not be written explicitly. When the deviations are in-
the leading nonlinear pressure fluctuation in g8 at long  finitesimal, pjoco deviates from the equilibrium distribution
wavelength. Peq as

In Sec. V we have presented the fundamental constitutive
equationg5.1)—(5.3). Note that Eq(5.3) holds only to lead-
ing order in the critical singularity. As applications we have
examined two examples. First we have calculated the density
variation against an oscillatory boundary temperature in thavith
fixed volume condition and secondly that after a small pres-
sure jump in the isobaric condition.

In Appendix A we have summarized the relationship be—Where SB=5T/ksT? and dv= dulkeT — (u/ksT2) ST from

tweerll the t?ermodynamic deriva(\jtives ar;‘d the ec;uilit;\riun}he definitions(2.3) and (2.4). The logarithm of the local
correlation functions. In Appendix B the specific heat S o
(C,)w. in wo phase coexistence beld has been calcu- equilibrium partition function=, 4.4 is expanded as

lated. In Appendix C the reversible stress tensor of pure flu-

APPENDIX A

p.oca|=peq[1+ f dr[ 8Q(r) —(8Q(n))] (A2)

SQ(r)=8&(r) 8B(r)+ p(r) 6u(r), (A3)

ids has been derived. In Appendix D the relation between kBIn(E|0ca.)=pV/T+f drfuéB+pév]+---, (Ad)
Kawasaki's theory and our theory will be discussed. They
give essentially the same results at low frequencies. wherep is the pressure and is the volume of the system.

We finally make some remarké) Though we have lim-  From Eq.(2.6) the second term of EqA4) is the space

ited ourselves to pure fluids, we have shown the generghtegral of the deviationbw=usB+ psv as ought to be the
mechanism of critical acoustic anomaly applicable to many.gge.

near-critical systems. That is, we should first identify an en-
ergy variablem as well as the order parametér in the
model Hamiltonian™, wherem is nonlinearly coupled to
¢ in 'H as in Eq.(3.2) and has the weak critical singurality <-’zl(r)>localz<~;l>+<-:4: 8) 5B+<A:,3>5,,, (A5)
with the critical exponent. There should be a linear term of

the field variable6H/ém generally in the fluctuating pres- where use has been made of the definiti@ri0. This leads
sure as in Eq(3.29. It contains a bilinear term ofy and to relations between thermodynamic derivatives and vari-
relaxes slowly in a sound giving rise to enhanced dissipationances,

We should verify this scenario in other systems such as bi-

The average of any local variable, sdyr), over pjocq iS
expressed as

nary fluid mixtures near the consolute critical point and (aA/aB),,=<Ql:é>, (AB)
*He near the superfluid transitiofii) As noted below Eq. R
(2.44), acoustic properties become much more anomalous (0Aldv)g=(A:p). (A7)

than in one-phase states when a fluid is phase separating in .
the course of nucleation or spinodal decomposition. An enHere A=(A) is a thermodynamic quantity. The relations
hanced frequency-dependent adiabatic compressibility if2.7)—(2.9) readily follow as special examples.
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Next we rewrite Eqs(A6) and (A7) in terms of the more  |iterature[52]. We note that the free energy functiorfalin
usual field variables, p and T. From &év=[ép  Eq.(3.1) should tend tdHyq in the long wavelength limit or
—(pH) 8T/T]/pkgT, H being the enthalpy per unit mass, we after the renormalization<¢~1) in equilibrium. Thus the

find temperature deviatioAT; defined by Eq(3.36 should tend
to Eqg. (A15) in the long wavelength limit around equilib-
_ P rium.
(0 AlIdT), kBT<A.s>, (A8)
1 APPENDIX B
((9«4/(9D)T=W<Aif’>- (A9) Let us consider macroscopic coexistence of a liquid re-

gion and a gas region confined in a cell with a fixed total
where the variable in Eq. (A8) is defined by Eq(2.3). We  volumeV. In terms of the mass densitigs, andpy, and the
can use these relations to deri@@32—(2.35. As another massesM , andMy,V may be expressed as
example we sef(r) = II;;(r), wherell;; is theij component 1 1
of the stress tensor. Becaudd;;)=pd;; we find V= ;M/+ p_Mg' (B1)
R R / g
IT;; :S)=0, (II; :p)=pkgTdi;, Al10 " . .
(11 :5) (I :p)=pkeT 3, (A10) Here quantities with the subscript (or g) are those of the
We may then introduce the projection operaRyg, onto the  liquid (or gag phase. We then change the temperattire
linear part of the gross variables in the long wavelengtinfinitesimally to T+6T. When V is fixed, M, and M,

limit. Its operation on the diagonal compondi yields the ~change asM,—M_ +éM, and Mg—Mg+6M,. Here

hydrodynamic pressure variable M,+6Mg=0 and
1 p oV (—1 —1)5|\/| +M 5(—1 +M 5(—1) 0
D == = 2 A - —_— S = - = .
Op=Phyaoll;=c?| dp ( as) os|. (Al1) P, P / vy 9% pg

p (B2

This variable has been discussed in the literat@852 and  This mass transformation takes place as a mass current
the relation(p:p)=kgTpc? is well known. It is known that  through the interface. Hence the thermal equilibration time in
the variance oflj; is larger than the variance @f and re- C, measurements in two phase states is much longer than
mains nonvanishing even at the critical pdib8]. More gen-  that in one phase states for the safie T |. Papers in Ref.

erally, for arbitrary. A(r) we obtain [33] report or discuss abnormally long thermal relaxations in
. the presence of an interface separating gas and liquid re-
(A:p)=KkgTpc?(3.Aldp)s. (A12)  gions.

_ ) _ . In the final stage the pressure change is given by
In Sec. Il we have considered the variances involymng

e, ands in the long wavelength limit. The distribution of the p
fluctuations ofp and e with wave numbers much smaller op= aT
than¢~ ! is Gaussian of the form exp(f drHpyq/kgT) with

ST, (B3)

CX

1 R 2_( 52
(6p) P

thd/T: - E

2 because the final state is again on the coexistence curve.
.. 1fo°Sy ; I )
Spse——| —5|(58)2, Here (9---/9-- ) is the derivative along the coexistence
2\du curve. We are interested in the total entropy change,

9°S
(9p2

o =(S,—Sy)OM ,+M ,5S,+ M ;0s
where S=ps is the entropy per unit volume. From Stora= (8, 5) M/ S 9

dS=(du— udp)/T we obtain ap 1
:M/ 55/_ ﬁ S —
=3 Y PSS B PSS B ex \P7
ap?>~ "Bap’ odpou  Bop’ au®> "Bou’ ap 1
(A14) +Mg 539—((?—1_) 5([)_9) , (B4)
CX

These thermodynamic relations again lead to H@s/)—
(2.9). Furthermore we obtain wheres, ands, are the entropies in the two phases and use
has been made of E4B2). By eliminating ép using Eq.

TaH (&T) 5A+(8T> 5 T 5 (ﬁs) R (B3) we obtain the relations
—Hhyg=| 5| Opt+| | de==| 65— |——| op
” "l m "l ss==c|1-| P} () a7 B5
(A15) s=2Cpl 1| o7 s : (B5)
CX S

This is the hydrodynamic temperature fluctuation induced by
the fluctuations of the gross variables similarly to the hydro- (1) 1 (aT) { (ap) ((9 )
S 1- —

S CX

T 5T, (B6)

dynamic pressure fluctuatidAl11). The fluctuation variance ZTCp a_p

of the above quantity i&sT%/pC, as is well known in the P
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where s and 8(1/p) are the entropy and volume changes in 1 )
the liquid (or gag phase if the thermodynamic derivatives H'=kBch dr'|f(p".e)+ 5|V ¢ ||, (CH
are those of the liquidor gas phase. The specific heat in

two-phase coexistence per unit mass is defined by Fromr’=r+u we obtaindr’ =dr(1+V-u). The space de-

rivatives are changed as

OSptal
<M/+Mg><cv>cx=T( ﬂ) (87)
9l x| =l ax;— 2, (9u;19%;)alax; . (C6)
After some calculations we obtain J
(M/+Mg)(CU)szM/CU/[1+Z}]+ MgCUg[lJrZé], Using these relations together wit61) and(C2) we obtain
(B9) oH oH 1
=|p+p—+(e+tp)—— + = |Vy|?| | 8
where C,, and C,4 are the specific hea€, in the two j=p+e Sp (e+p) se KeTol T 2|V1’ll| ”5”
phases and
+kgT A kid (C7
e Cp L ap L 2T (ap)\? ©ax; x;’
e, ap ST PCK (AT . . . .
ex cx whereH is regarded as a functional pfande in the deriva-

(B9 tives. From this expression we can confirm that the deviation

I1;; —pdj; is very small and Eq(C3) is surely a good ap-
proximation. Furthermore, under the linear relatiq@s21)
and (2.22 we notice the identity

TheZ, andZ; in Eq. (B8) are the values oZ’ in the two
phases. From Eq. (2.49 and ©@Tlap)s
=(dT/ap),(1-C,/C,) we find Z'—aZ=1 asT—T, on
the coexistence curve. Thus we obtain E245 near the P
critical point. The relationB9) is equivalent to that due to Sp—+de

Sy (C8)
Fisher[36]. op - em TSy

Then usingp=(p)+ 6p ande=u+ Se, we may rewrite Eq.
APPENDIX C (C7) as in Eq.(3.28 with Egs.(3.29 and (3.34).

We derive the reversible part of the stress tensor

= - . . APPENDIX D
IT ={IT;;} arising from the fluctuations gf ande neglecting

dissipation. We consider a small fluid element at position In the original mode coupling theofyd3] the sound at-

and at timet. Due to the velocity field(r,t) the element is tenuation and dispersion are expressed in terms of compli-

displaced to a new positiom; =r+u with u=wvét, after a  cated combinations of thermodynamic derivatives and subse-

small time intervalst. Then the density is changed tp’ as  quent analyses used these expressjdisAg. Hence let us
first simplify the sound attenuation per wavelength in

p'=p(1-V-u). (C) Kawasaki's theory using the two-scale factor universality

(2.48 and(3.19. It reads

On the other hand, the change of the internal energy density

e is written as ay=27c? Al (w*), (D1)
where
e'=e(1-V-u)— 2 I — ax (C2
keT® 1 [ap\? [ok\? o2
We derive the second term of E¢C2) by calculating the ~2@%p3 ctci aT pK aTl,’ ©2)

change of the total energy densiéy- 2pv? in the fluid ele-
ment. We can confirm that the deviation Hf;; from the = ¢-1 peing the inverse correlation length. Thv*) is a

averagep ; (=p.dj; ,p being the critical pressuyés very  function of the dimensionless frequeney = /2T, defined
small and that Eq(C2) may be further approximated by by

e'=e—(e+p)V-u. (C3 w*K(X)

[(w*)= jdx 1+X2)2 K007+ (0 )2 (D3)

whereK (x)=3[1+x2+ (x3—x " Y)arctan) ] is the so-called
Kawasaki function. We first use E¢4.7) to eliminatec? to

Against these changes the Ginzburg-Landau free energy
(3.1 is changed as

J
SH=H'—H=— | dr2 (8llj)--u,  (C4 obtain
[ i
. . ) L. kBT oK 2
which is nothing but the definition ofIl;; =1II;; —pg;; . The 2mwCl A= k|l —=| . (D4)
displaced free energy is written as mpC, ) \IT/
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Next we se{48] (dx/dT)s=(d«xldT),=vkl(T—T,) onthe nonlinear pressure fluctuation was then approximated as a

critical isochore abové . Further using the relatio(2.48  linear combination ofiqis_4, in which the coefficient is
of the two-scale factor universality, we arrive at called the vertex functiorV,. Kawasaki and Tanakgb3]
b 3 . found microscopically that the projection &fl,, onto the
ay=(av TR (w*), (DS pilinear part of the order parameter is very small at long

wavelengths, which is also the case in our Ginzburg-Landau

where R,=0.25 is defined by Eq(2.48. For o*<1 we scheme becaus#/ém is orthogonal to any powers @f as
integrate(D3) by settingK(>i)zx2(£+ x?) following Perl is evident from&ylgq.(SA). Frorr? Eqs.(Allg/ IZmd (Alazn; it
and Ferrell[3] to obtainl (w*)=2w*/3. Thus, follows Kawasaki's result
ay=(av?37R}) /T =0.27/T ;. (D6) P P
. _ _ Vo=— kBTpc2<—sq) S, = kBTpc2<—k2). (D7)
The coefficient 0.27 is of the same order as ew@wxpansion ap ) p
value mRy,=(m/24)e+ - - - obtained from Eqs(4.10 and
(4.21. Because the structure fact§, is of the Ornstein-Zernike
Next we clarify the relationship between the mode cou-form at smallg, V turns out to be independent gf After
pling theory and our theory. The mode coupling theorysome calculations we find that,(=V,) is equal to the co-
[2,13] treated the time correlation function of the zero waveefficient of our nonlinear pressure Eg.8 multiplied by
number component of (2P 61y, where P4 is the y=2v. Thus the difference is only in the coefficient and
projection operator onto the gross variables(4i1). This  vanishes ag—0.
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