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Dynamic equations and bulk viscosity near the gas-liquid critical point

Akira Onuki
Department of Physics, Kyoto University, Kyoto 606-01, Japan

~Received 16 February 1996; revised manuscript received 4 June 1996!

We derive dynamic equations of the mass, energy, and momentum densities to describe dynamics of highly
compressible fluids near the gas-liquid critical point. In particular, the complete expression for the stress tensor
is presented, which is nonlinear with respect to the fluctuations of the mass and energy densities. The most
dominant nonlinearity in the stress tensor can then be identified and a very simple and systematic theory can
be constructed on the enhanced bulk viscosity near the critical point with no adjustable parameter. We intro-
duce the frequency-dependent adiabatic compressibility and constant-volume specific heat. Our theory is es-
sentially equivalent to Kawasaki’s theory@Phys. Rev. A1, 1750 ~1970!# at low frequencies and reproduces
Ferrell and Bhattacharjee’s phenomenology@Phys. Lett. A36, 109 ~1981!; 88, 77 ~1982!; Phys. Rev. A31,
1788~1985!# at high frequencies. We explicitly calculate strikingly slow decay of the time correlation function
of the diagonal part of the stress tensor. As proposed experiments we examine how the density changes
adiabatically in two situations with a fixed volume or pressure. As a by-product we also derive some relations
among the critical amplitudes of the constant-volume specific heat above and belowTc . It is shown to
correspond to the specific heat at constant magnetization in Ising spin systems.@S1063-651X~97!04201-3#

PACS number~s!: 66.20.1d, 64.70.Fx, 64.60.Ht, 05.70.Jk
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I. INTRODUCTION

Hydrodynamics and thermodynamics are insepara
coupled near the critical point of fluids. This dynamical co
pling gives rise to the well-known critical divergence of th
transport coefficients such as the thermal conductivity
the shear viscosity@1–4#. Moreover, it produces a variety o
complex effects observable on macroscopic spatial sca
Such effects are particularly unique near the gas-liquid c
cal point, where fluids are highly compressible even aga
very small pressure and temperature variations. As a cla
example severe density stratification under gravity has l
been studied near the gas-liquid critical point mainly fro
statics@5#, whereas it was recognized in an early period t
thermal relaxation under gravity can be highly nonline
with respect to both gravity and heat current@6#. In addition
a crucial role of adiabatic heating effects has recently b
established both theoretically@7# and experimentally@8#.
That is, if a sample with a fixed volume is warmed from t
boundary, sounds created by a thermal expansion nea
boundary cause instantaneous, adiabatic temperature ch
throughout the container. This effect, sometimes called
Piston effect, results in critical speeding up of thermal equ
bration. This mechanism has turned out to explain an e
experiment in space by Nitsche and Straub@9#.

At the present stage the research in this direction has
yet attracted enough attention and still remains premat
Above all, there is no systematic analysis on the interp
between adiabatic processes and thermal relaxation on
ous space and time scales on the basis of a reliable dyn
cal model of compressible near-critical fluids. To this en
we need to know the complete expression for the relev
part of the stress tensor induced by the critical fluctuatio
Because in near-critical fluids the sound mode has a fast
scale and does not affect the diffusive mode of the entr
relaxation, the mode coupling theory@1–3# and the dynamic
renormalization group theory@4# start with dynamic models
551063-651X/97/55~1!/403~18!/$10.00
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in which only the entropy density and the transverse par
the velocity field are involved. Although this treatment
allowable in calculating the diffusive relaxation, there can
a number of problems in which the high compressibility
fluids is crucial. We mention adiabatic effects in the fix
volume condition against time-dependent external pertur
tions such as an oscillating boundary temperature. There
also only a few theories as to how the temperature and
pressure vary in time in the course of spinodal decomp
tion @10# or nucleation@11# in the adiabatic condition or in
the fixed volume condition. The latter aspect is very imp
tant near the gas-liquid critical point. Molecular dynam
simulations face this problem seriously also.

It is established that, while the sound mode does not
fect the diffusive mode, its attenuation is drastically e
hanced by slow relaxation of a pressure deviation bilin
with respect to the entropy fluctuations. However, theories
critical sound attenuation have not yet been fully satisfact
just because of the lack of the exact expression for the st
tensor in the Ginzburg-Landau scheme. A brief summary
previous theories is as follows. Developing an idea of Bo
and Fixman@12#, Kawasaki predicted strong critical diver
gence of the sound attenuation or the bulk viscosity in
mode coupling theory@13#. However, it involves compli-
cated combinations of thermodynamic quantities and is
disagreement with experiments at high frequencies. Mist
presented a formal theory of complex frequency-depend
adiabatic compressibility and specific heat@12,14#. Ferrell
and Bhattacharjee developed a scaling theory on the
quency dependence of the complex specific heat@15#. They
predicted that, at high frequenciesv@Gj , the frequency-
dependent specific heat behaves as (iv)2a/nz and this excel-
lently explains the observed high-frequency anomaly. H
Gj}j2z with z>3 is the order parameter relaxation rate, a
a/nz>0.057 is a universal number,a andn being the criti-
cal exponents. This argument was originally devised
4He near the superfluid transition@16#. Kroll and Ruhland
403 © 1997 The American Physical Society
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404 55AKIRA ONUKI
applied the renormalization group method at smalle542d
to calculate the generalized frequency-dependent bulk
cosity or adiabatic compressibility@17#. They obtained a
scaling form for the adiabatic compressibility as a functi
of iv/Gj . It exhibits the singular frequency dependen
( iv)2a/nz in the high frequency regime in agreement w
the Ferrell-Bhattacharjee prediction. In the Kroll and Ru
land theory coupled Langevin equations containing so
phenomenological coefficients were assumed for the entr
s(r,t) and the pressurep(r,t) at the starting point of the
renormalization group procedure. Afterwards Dengler a
Schwable@18# presented a theory by generalizing the mo
of Kroll and Ruhland and calculated a universal amplitu
ratio for the sound attenuation above and belowTc . Very
recently Folk and Moser@19# have briefly reported a calcu
lation of the sound attenuation to be in good agreement w
experiments. In summary, however, we note that the r
tionships among these theories have not yet been adequ
clarified. In particular, we need to link Kawasaki’s theo
and Ferrell and Bhattacharjee’s theory from first principle

The main aim of this paper is to present a theory in wh
the mass density and the energy density are dynamic v
ables. They are more fundamental than the entropy and
pressure used in the previous theories and their dyna
equations can be obtained unambiguously from the con
vation laws. The organization of this paper is as follows.
Sec. II we will discuss the mapping relationship betwe
pure fluids and Ising spin systems because the Ginzb
Landau-Wilson Hamiltonian for Ising spin systems will b
used in our dynamic equations. In other words, to corre
calculate the bulk viscosity, we need to know what variab
in fluid systems correspond to the spin~or order parameter!
variablec and the energy variablem in Ising spin systems
The latter two variables have strong and weak critical sin
larities characterized by the critical exponentsg anda, re-
spectively. In fluid binary mixtures the identification of th
correct order parameter is indispensable even apart from
sound mode to calculate three kinetic coefficients for the
diffusive modes of heat and composition. Thus this appro
has already been taken in theories for diffusive transpor
binary fluid mixtures@20–22#. In Sec. III we will derive
proper Langevin equations describing dynamics near the
liquid critical point and obtain an expression for the stre
tensor in terms ofc andm. In Sec. IV we will calculate the
frequency-dependent bulk viscosity using thee expansion
method in dynamic renormalization group theory and int
duce a frequency-dependent specific heat. In Sec. V we
examine macroscopic adiabatic processes as application
our theory.

II. THERMODYNAMICS NEAR THE GAS-LIQUID
CRITICAL POINT

A. Mapping onto Ising spin systems

We describe the critical behavior of pure fluids near
gas-liquid critical point in terms of the mass densityr̂(r,t)
and the energy densityê(r,t). These two variables hav
well-defined microscopic expressions in terms of the part
coordinates and momenta. Therefore we choose them a
fundamental variables in our theory. In this section the va
ables with the caret, such asr̂ and ê, denote dynamic vari-
s-
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ables with molecular expressions, while those without
caret are thermodynamic quantities in equilibrium or simp
constants. The equilibrium averages ofê andr̂ are written as

u5^ê~r,t !&, r5^r̂~r,t !&, ~2.1!

where ^ & is the average over the grand canonical distrib
tion. We note that the energy supported by each particle m
be arbitrarily shifted by a constant value, saye0. This means
that the physical properties of the system are invariant w
respect to the following redefinition of the energy variabl

ê85ê1e0r̂, ~2.2!

e0 being arbitrary.
In our case it is convenient to choosev5p/kBT as the

thermodynamic potential dependent on the following tw
field variables@22–27#,

B5
1

kB
S 1Tc 2

1

TD , ~2.3!

n5
1

kB
S m

T
2

mc

Tc
D , ~2.4!

wherem is the chemical potential per unit mass,Tc is the
critical temperature,mc is the critical value ofm, andkB is
the Boltzmann constant. Our definitions ofB and n are
slightly different from those of Leung and Griffiths@27# be-
cause we have made them vanish at the critical point.
entropy per unit mass is expressed as

s5~rm2u2p!/rT, ~2.5!

so the Gibbs-Duhem relationdm52sdT1r21dp may be
rewritten as

dv5udB1rdn. ~2.6!

The choice ofv as the thermodynamic potential is mo
natural theoretically due to the above relation or equivalen
due to the fact that the logarithm of the grand canoni
partition function is the space integral ofv. We may thus
postulate thatv corresponds to2 f /kBT of Ising systems
where f is the free energy density in Ising systems. Th
correspondence is obviously exact for lattice gas models.
Appendix A for more discussions. There, we shall find t
following exact relations among the thermodynamic deriv
tives and the fluctuation variances@20,21,28,29#:

^r̂: r̂&5
]2v

]n2
5

]r

]n
5kBTr2KT , ~2.7!

^ê:ê&5
]2v

]B2 5
]u

]B
, ~2.8!

^r̂:ê&5
]2v

]n]B
5

]r

]B
5

]u

]n
, ~2.9!

wherev, r, andu are regarded as functions ofB andn and
KT5r21(]r/]p)T is the isothermal compressibility. We in
troduce the notation
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55 405DYNAMIC EQUATIONS AND BULK VISCOSITY NEAR . . .
^Â:B̂&5E dr^dÂ~r,t !dB̂~r0 ,t !&, ~2.10!

whereÂ(r,t) andB̂(r,t) are arbitrary local density variables
dÂ5Â2^Â& and dB̂5B̂2^B̂& being the deviations from
the equilibrium averages.

It has been assumed in the literature thatv5p/kBT con-
sists of a singular part and a regular part dependent on
relevant field variables,h andt, as

v5vsing~h,t!1v reg~h,t!. ~2.11!

To leading order in the critical singularity
vsing(h,t)/utu22a is a universal function oft/uhu1/(b1g) ,
wherea, b, andg are the usual critical exponents. The tw
relevant parametersh andt correspond to the magnetic fiel
and the reduced temperature (T2Tc)/Tc in Ising spin sys-
tems. In pure fluidsh and t are related toB andn in Eqs.
~2.3! and ~2.4! by the following linear relations:

h5a1n1a2B, ~2.12!

t5b1n1b2B. ~2.13!

The coefficientsa1, a2, b1, andb2 will be assumed to be
simply constants and not singular on approaching to the c
cal point. In particular, becauseh50 on the coexistence
curve, the ratioa2 /a1 is written as

a2

a1
52S ]n

]BD
h

>2S ]n

]BD
cx

52TcS ]m

]T D
cx

1mc .

~2.14!

Hereafter (]•••/]•••)cx is the derivative on the coexistenc
curve in the limitT→Tc . With this postulate we can ma
the critical behavior of pure fluids onto that of Ising sp
systems. It follows that pure fluids belong to the Ising u
versality class in static critical behavior.

In Ising spin systems the order parameter denoted
ĉ(r,t) is the spin variable, whose conjugate field ish. The
free energy is an even function ofh due to the inheren
symmetry of the system. The equilibrium average and v
ance ofĉ are thus given by

M5^ĉ&5]v/]h, ~2.15!

x5^ĉ:ĉ&5]2v/]h25]M /]h. ~2.16!

In Ising spin systems the energy density variable denoted
m̂(r,t) exhibits weak critical fluctuations characterized
the critical exponenta(>0.1). Its conjugate field ist, so that

^m̂&5]v/]t, ~2.17!

CH5^m̂:m̂&5]2v/]t2. ~2.18!

We measurem̂ from the critical value and̂ m̂&50 at the
critical point. TheCH is proportional to the specific heat a
constanth. In particular, x}utu2g with g>1.25 andCH
}utu2a ash→0. As regards the cross correlation we hav

^ĉ:m̂&5]2v/]h]t5]M /]t, ~2.19!
o

ti-

-

y

i-

y

which vanishes ash→0 in the disordered phase. But it i
equal to6bB08utub21 from ^c&56B08utub on the coexist-
ence curve. Here we also introduce the specific heat at c
stant magnetizationM5^c&,

CM5]2v/]t22@]2v/]h]t#2/@]2v/]2h#

5^m̂:m̂&2^ĉ:m̂&2/^ĉ:ĉ&. ~2.20!

We will show that the constant-volume specific heatCv for a
single phase of fluids asymptotically corresponds toCM ~not
to CH) in Ising spin systems.

In fluid systems it is not obvious how to define the corr
sponding density variables,ĉ andm̂, in contrast to Ising spin
systems or equivalent lattice gas models. Here we stress
the postulate of Eqs.~2.12! and ~2.13! simply implies the
following linear mapping relations@16#,

r̂2rc5a1ĉ1b1m̂, ~2.21!

ê2ec5a2ĉ1b2m̂, ~2.22!

whererc andec are the critical values and the coefficien
a1, b1, a2, andb2 are introduced in Eqs.~2.12! and~2.13!.
The inverse relations of Eqs.~2.21! and ~2.22! read

ĉ5~a1b22a2b1!
21@b2~ r̂2rc!2b1~ ê2ec!#,

~2.23!

m̂5~a1b22a2b1!
21@2a2~ r̂2rc!1a1~ ê2ec!#.

~2.24!

We derive these relations by requiring

hĉ1tm̂5n~r̂2rc!1B~ ê2ec!. ~2.25!

We may confirm that Eqs.~2.21! and ~2.22! are consistent
with the thermodynamic relations involving the fluctuatio
variances, Eqs.~2.7!–~2.9!, ~2.16!, ~2.18!, and~2.19!, under
the mapping relations of the field variables, Eqs.~2.12! and
~2.13!. It then follows that the shifted energy variable

~ ê2ec!2~a2 /a1!~ r̂2rc!5~b22a2b1 /a1!m̂
~2.26!

is proportional tom̂ and is weakly singular as in Ising spi
systems. Recall that the energy may be shifted as Eq.~2.2!.
Thus the coefficienta2 is arbitrary and may be set equal
zero from the beginning@22,27#. Furthermore, the relation
~2.21! indicates that the average density on the coexiste
curve behaves as

r2rc56a1B08utub1b1B18utu12a, ~2.27!

where the plus sign is for the liquid densityr l and the minus
sign for the gas densityrg , and we have seth50, so

t5b~T/Tc21! ~2.28!

with

b5~b22b1a2 /a1!/kBTc . ~2.29!
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406 55AKIRA ONUKI
The coefficientsB08 and B18 in Eq. ~2.27! arise from
]vsing/]h and]vsing/]t, respectively. The cross coefficien
b1 gives rise to the second term in Eq.~2.27! causing singu-
lar asymptotic behavior of the coexistence-curve diamete

~r l 1rg!/22rc>b1B18b
12a~12T/Tc!

12a. ~2.30!

While a2 may be set equal to zero as stated above, nonv
ishing of b1 can be detected from Eq.~2.30!. b1 is often
referred to as the mixing parameter@22–26#.

B. Entropy variable and specific heats

In the literature an entropy variable, which will be d
noted byŝ(r,t), has often been used instead of the ene
variableê(r,t) @1–4,17–22#. In dynamics this choice is con
venient becauseŝ is decoupled from the sound mode at lo
wavelengths. In terms ofr̂ andê it may be expressed as@20#

ŝ5
1

rT
@ ê2H r̂ #1

p

rT
1s, ~2.31!

whereH5(u1p)/r5m1Ts is the enthalpy per unit mass
The coefficients in front ofê andr̂ and the last two terms ar
thermodynamic quantities. They depend onn andB ~or h
and t) and are not regular with respect to them near
critical point @30#. However, the variableŝ has the following
merits even in statics.~i! ŝ is invariant with respect to the
shift of the energy Eq.~2.2! becauseH is also shifted as
H1e0. ~ii ! The variances ofŝ are related to the specific he
Cp at constant pressure and the specific heatCv at constant
volume as@20#

Cp5TS ]s

]TD
p

5kB
21r^ŝ: ŝ&, ~2.32!

Cv5TS ]s

]TD
v

5kB
21r@^ŝ: ŝ&2^ŝ: r̂&2/^r̂: r̂&#. ~2.33!

From the definition Eq.~2.31! Cv may also be rewritten in
terms ofr̂ and ê in a form due to Schofield@28#,

Cv5~rkBT
2!21@^ê:ê&2^ê: r̂&2/^r̂: r̂&#, ~2.34!

which is obviously invariant with respect to the transform
tion ~2.2!. See the first line of Eq.~2.38! below also. The first
relation ~2.32! follows from the thermodynamic relatio
rds5(du2Hdr)/T and Eq. ~A8!. In the second relation
~2.33! we have used

^ŝ: r̂&5r21kBTS ]r

]TD
p

5rkBTS ]s

]pD
T

. ~2.35!

If we are interested only in the most singular part, we m
setd ŝ>asĉ with

as5
1

rT
~a22Ha1!52

1

r2 S ]p

]TD
h

a1>2
1

rc
2 S ]p

]TD
cx

a1 ,

~2.36!

where use has been made of Eq.~2.14!. Therefore we obtain
strongly divergent variances,
n-

y

e

-

y

rCp>TS ]p

]TD
cx

2

KT>kB
21rc

2as
2^ĉ:ĉ&, ~2.37!

whereKT is the isothermal compressibility appearing in E
~2.7!. To examine the right hand side of~2.33! we note the
following relation,

^ŝ: ŝ&^r̂: r̂&2^ŝ: r̂&25~rT!22@^ê: ê&^r̂: r̂&2^ê: r̂&2#

5@~a1b22a2b1!/rT#2@^ĉ:ĉ&^m̂:m̂&

2^ĉ:m̂&2#, ~2.38!

which follows from Eqs.~2.31!, ~2.21!, and~2.22!. Then, to
leading order in the critical singularity, we obtain

Cv>~r21kBb
2!CM5~r21kBb

2!~12Rv!CH , ~2.39!

where b is defined by Eq.~2.29!. Thus Cv}CM , where
CM is the specific heat at constant magnetization defined
Eq. ~2.20! in the corresponding Ising spin system.Rv is de-
fined by

Rv5^ĉ:m̂&2/@^ĉ:ĉ&^m̂:m̂&#

5@]2v/]h]t#2/$@]2v/]2h#@]2v/]t2#% ~2.40!

and is a universal function oft/uhu1/(b1g). Obviously, it is
non-negative-definite, smaller than 1, and vanishes on
critical isochore aboveTc . On the coexistence curve we ca
easily checkRv→3/4 ase→0, but we estimateRv>0.50
using Eq.~2.43! below and relations among the critical am
plitudes in Ising spin systems@31#.

C. Universal numbers

If the mapping Eqs.~2.12! and ~2.13! onto the Ising spin
systems is correct, some combinations of the critical am
tudes become universal numbers independent of flu
@23,24#. For example, let us expressCv and KT as
Cv /kB>A(T/Tc21)2a/a andrkBTKT>G(T/Tc21)2g on
the critical isochore above Tc and Cv /kB
>A8(12T/Tc)

2a/a and rkBTKT>G8(12T/Tc)
2g on the

coexistence curve . The coefficientsA8 andG8 are common
in the liquid and gas phases. The density on the coexiste
curve is expressed as (r2rc)/rc>6B8(12T/Tc)

b. Then
we readily find using Eq.~2.28! thatAG/aB82 andG8/G are
independent of the parameterb in Eq. ~2.29! and are equal to
the corresponding universal numbers,A0G0 /aB08

2>0.581
and G08/G0>0.202, in Ising spin systems@31#, where we
write CH>A0t

2a/a andx>G0t
2g for h50 aboveTc and

CH>A08utu2a/a, x>G08utu2g, and ^c&>6B08utub for h50
below Tc in Ising spin systems. However, from Eq.~2.39!
the specific heat amplitudes satisfy

A8/A5~12Rv!A08/A0 , ~2.41!

whereA08/A0>1.91. Some calculation shows thatRv on the
coexistence curve may be expressed from Eqs.~2.16!, ~2.18!,
and ~2.19! as

Rv5ab2B08
2/A08G08 . ~2.42!
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See the sentences below Eq.~2.19! for the behavior of
^ĉ:m̂& on the coexistence curve. We also introduce anot
universal numberac defined on the coexistence curve b
@32#

ac
25ab2B82/A8G85Rv /~12Rv!. ~2.43!

This number is close to 1 and characterizes acoustic pro
ties of phase-separating fluids near the gas-liquid crit
point. This is because the adiabatic temperature increase
to a pressure variation in a sound can be different in the
phase~the plus sign! and the liquid phase~the minus sign! as
@32#

S ]T

]pD
s

5S ]T

]pD
cx

@16ac~Cv /Cp!
1/21•••#. ~2.44!

The temperature inhomogeneities thus induced give rise
very large acoustic attenuation at very low frequencies w
the fluid is undergoing phase separation@32#. The above re-
lation is also important in explaining slow thermal equilibr
tion in two-phase coexistence@7,8,33#.

In real experiments on the coexistence curve, howe
the constant-volume specific heat has been measured m
in two phase coexistence@33–36#. In this case the volume
fraction of each phase adjusts to change such that the p
sure and temperature stay on the coexistence curve. Nea
critical point the resultant specific heat denoted by (Cv)cx
behaves as

~Cv!cx>~11ac
2!Cv , ~2.45!

which will be derived in Appendix B. We thus have th
critical behavior (Cv)cx /kB>Acx(12T/Tc)

2a/a with

Acx5~11ac
2!A85~12Rv!

21A8. ~2.46!

That is, the critical behavior of the so-called isochroic h
capacity, which isCv aboveTc and (Cv)cx belowTc , is the
same as that ofCH at h50 in Ising spin systems. We now
obtain

Acx /A5A08/A0>1.91, A8/A>0.95. ~2.47!

In our notationCv is the constant-volume specific heat of
single phase, whereas in previous experimental reportsCv is
used to denote (Cv)cx below Tc . We note thatCv in our
notation can be measured in the presence of a liquid~or gas!
region only, where phase separation has not yet occurred
the other phase should not wet the boundary wall. As fa
the present author has noticed, Dahl and Moldover@37# first
measuredCv in single phases of liquid states near the co
istence curve indeed in accord withA8/A;1. Brown and
Meyer@33# also reported similar data in single phases, wh
are listed in their unpublished tabulation ofCv . We also note
that the relationA8/A;1 follows even from the so-called
linear model of parametric equation of state for fluids@38#.

Furthermore, the two-scale factor universality@39# im-
plies thatjdvsing and hence

Rj5~T/Tc21!2/dj~arCv /kB!1/d

5t2/dj~aCH!1/d ~2.48!
er

er-
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are universal numbers on the critical isochore aboveTc ,
wherej is the correlation length. The first line of Eq.~2.48!
consisting of the quantities of fluids becomes independen
the parameterb in Eq. ~2.29! and equal to the second lin
consisting of those of Ising spin systems. It is known th
Rj>0.25 at d53 theoretically and experimentall
@40,23,24#. The above relation will be used in Appendix D

III. MODEL EQUATIONS

A. Statics

From this section the caret onr̂, ê, ĉ, andm̂ will not be
written to avoid the heavy notation. We recall that the ma
density deviationr2rc and the energy density deviatio
e2ec are related toc andm by the linear relations~2.21!
and~2.22!. We can set up the Ginzburg-Landau-Wilson fr
energy functional forc andm as @41#

H5kBTcE dr@ f ~c,m!1 1
2K0u¹cu2#, ~3.1!

where

f5
1

2
r̄ 0c

21
1

4
ū0c

42hc1
1

2C0
m21g0mc22tm.

~3.2!

Here r̄ 0, ū0, K0, g0, andC0 are the parameters dependent
the initial upper cutoff wave numberL0. As in Sec. IIh and
t are the two relevant field variables given in Eqs.~2.12! and
~2.13!, so they are independent ofL0. Obviously in the equi-
librium distribution, the variable

M5
d

dm
H5

1

C0
m1g0c

22t ~3.3!

obeys a Gaussian distribution independent ofc. In fact we
may rewritef as

f5
1

2
r 0c

21
1

4
u0c

42hc1
1

2
C0M2, ~3.4!

where

r 05 r̄ 012C0g0t, ~3.5!

u05ū022C0g0
2 . ~3.6!

We notice thatr̄ 0 is determined automatically if we impos
the condition thatt vanishes at the critical point. This mode
was studied in thee542d expansion method of renorma
ization group theory@41#, whered is the spatial dimension
ality. Without loss of generality we may setK051 by the
simple rescalingK0

1/2c→c.
In the usual renormalization group scheme, the fluct

tions are coarse-grained in a stepwise manner and the re
ings of the space coordinates and the order parameter
performed simultaneously to obtain the fixed point Ham
tonian. In this paper, to obtain the physical quantities direc
without rescaling factors, we perform the coarse grain
only. This approach was taken by Kawasaki and Gunton
dynamics@42#. Then the upper cutoff wave numberL is
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decreased from the initial valueL0. WhenL becomes of the
order of the inverse correlation lengthj21, the fluctuation
contributions can eventually be treated within the usual n
mal perturbation scheme. The parameters in the model~3.1!
become functions ofL and will be written asr̄ (L), r (L),
u(L), K(L), g(L), andC(L), whose initial values arer̄ 0,
r 0, u0, K0, g0, and C0, respectively. In the region
j21!L!L0 we have the following asymptotic power law

r ~L!2 r̄ ~L!52C~L!g~L!t;L22h21/nt. ~3.7!

The other coefficients behave as

u~L!;Le22h, K~L!;L2h,

g~L!;L~e1a/n!/22h, C~L!;L2a/n, ~3.8!

wherea, n, andh are the usual critical exponents. The r
lation ~3.7! is consistent with the power laws forC(L) and
g(L) from the exponent relationnd522a. The exponent
h is of ordere2 and is very small, so we may be seth50
andK(L)51 in rough estimates. In addition,h should not
be confused with the shear viscosity. It goes without say
that, whenL becomes smaller thanj21, the fluctuation con-
tributions are no longer significant and the parameters
Eqs. ~3.7! and ~3.8! stay on the order of the values
L;j21.

We have introducedK(L) to check exact scaling rela
tions valid to all orders ine. For example, we obtain
r (L)>1/x>K(L)j22 for L&j21. We note thatr̄ (L) is
small for smalle and r (L)>2C(L)g(L)t from Eq. ~3.7!
for L&j21. Thus we may calculateg(L) for L!j21,
which will be written asgR . Particularly on the critical iso-
chore above Tc ~or h50 and t.0), we set
j5j0(T/Tc21)2n andt5b(T/Tc21) to obtain

gR>~T/Tc21!g21/~2bj0
2CH!. ~3.9!

Herej0 is a microscopic length,b is defined by Eq.~2.29!,
g>1.24 is the usual critical exponent,CH5C(0) is the spe-
cific heat at constant magnetic field defined by Eq.~2.18!,
andK(L) has been replaced by (j/j0)

h.
It is convenient to introduce the following dimensionle

numbers@41#,

g~L!5@Kdu~L!#/@K~L!2Le#, ~3.10!

v~L!5@Kdg~L!2C~L!#/@K~L!2Le#, ~3.11!

where Kd5(2p)2d2pd/2/G(d/2). Sufficiently close to the
critical point ~or for smallr 0) g andv are known to tend to
fixed point values asL is decreased. In fact their renorma
ization group equations to leading order ine are

2L
]

]L
g5eg29g2, ~3.12!

2L
]

]L
v5ev26gv22v2. ~3.13!

The stationary solutions of Eqs.~3.12! and~3.13! give fixed
point values asL→0,
r-

g

in

g*5
1

9
e1•••, ~3.14!

v*5
1

6
e1•••. ~3.15!

Thereforeu(L);g(L)2C(L);Le to first order in e for
j21&L!L0.

The C(L) tends to the specific heatCH of Ising spin
systems asL→0. Its differential recursion relation is

2L
]

]L
C~L!52v~L!C~L!. ~3.16!

Settingv(L)5v* yields the asymptotic behavior,

C~L!;L22v* . ~3.17!

As L is decreased down to the inverse correlation len
j21, the well-known critical behaviorC(j21);CH;ja/n is
obtained with@41#

v*5a/2n, ~3.18!

which holds to first order ine. The fixed point valuev* will
appear in the bulk viscosity as an important coefficient in
next section. From Eqs.~3.9! and ~3.11! we also notice the
relation v*>Kd /(4t2jdCH), which is consistent with the
following e expansion ofRj in Eq. ~2.48! of the two scale
factor universality@31,39–41#,

Rj
d5KdS a

4v* D S 11
1

3
e D1O~e2!. ~3.19!

Furthermore, we should note that the approach ofv(L) to
v* is slow or the correction to the power law behavior E
~3.16! is not small as demonstrated by Siggia and Nels
@41#. That is, in the regionj21,L!L0, Eqs. ~3.12! and
~3.13! are solved to give

v* /v~L!>11~g* /g0!
1/3~3g0/2v021!~L/L0!

e/3

;C~L!Le/3, ~3.20!

whereg0 andv0 are the initial values atL5L0. The correc-
tion of order (L/L0)

e/3 in Eq. ~3.20! gives rise to the back-
ground heat capacityC0, where CH is expressed as
CH>A0t

2a/a1C0. However, it cancels to vanish in th
productC(L)g(L) in Eq. ~3.7! as ought to be the case. As
result this product deviates from its asymptotic behavior E
~3.7! only by (L/L0)

e as well asg2g* . In this paper we are
interested in the leading singularity and neglect transient
havior such as in Eq.~3.20! for simplicity.

B. Dynamic equations

In constructing dynamic equations we chooser, e, and
the momentum densityJ as the fundamental gross variable
We believe that the choice of the entropy and the pressur
the gross variables from the starting point is misleading. T
velocity field is defined by
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v5
1

r
J. ~3.21!

The kinetic energy in the system is then

HK5E dr
1

2
rv25E dr

1

2r
J2. ~3.22!

These three variables are conserved quantities and are
erned by nonlinear Langevin equations with Gaussian noi

]

]t
r52¹•J, ~3.23!

]

]t
e52¹•@~e1p!v#1l0Tc¹

2
dH
de

1u, ~3.24!

]

]t
J52¹•~rvv!2¹•P

↔
1h0¹

2v

1Fz01S 12
2

dDh0G¹~¹•v!1z. ~3.25!

In Eq. ~3.24! the pressurep may be replaced by its equilib
rium average (>pc , pc being the critical pressure! near the
critical point since its fluctuation is small as compared to t
of e. Thel0 is the background thermal conductivity becau
dH/de is the fluctuation part of the temperature divided
Tc @see Eq.~3.36! below#. The u(r,t) is the random source
term characterized by

^u~r,t !u~r8,t8!&522kBTc
2l0¹

2d~r2r8!d~ t2t8!.
~3.26!

In Eq. ~3.25! P
↔

is the reversible stress tensor arising fro
the deviations ofr and e, while h0 and z0 are the back-
ground shear and bulk viscosities, respectively. The rand
source fieldz(r,t) is a vector and satisfies

^z i~r,t !z j~r8,t8!&522H h0d i j¹
21Fz01S 12

2

dDh0G
3

]

]xi

]

]xj
J d~r2r8!d~ t2t8!. ~3.27!

The noise relations~3.26! and ~3.27! are examples of the
so-called fluctuation-dissipation theorem. Obviously, we
tain the usual hydrodynamic equations of one compon

compressible fluids far from the critical point ifP
↔

in Eq.
~3.25! is replaced byp, p is regarded as the usual pressu
dependent on space and time, and the noise terms are
ted.

In Appendix C the reversible stress tensor will be sho
to be of the form

P i j5~p1dpf !d i j1P̃i j . ~3.28!

The fluctuation contribution in the first term is diagonal a

dpf5^r&
d

dr
H1~u1p!

d

de
H

ov-
s,

t

m

-
nt

it-

n

5c1
d

dc
H1c2

d

dm
H, ~3.29!

where ^r& and u are the equilibrium averages of the ma
and energy densities.~Note that the average mass density h
been written asr in Sec. II!. They may well be replaced by
the critical valuesrc ,ec as well asp in Eq. ~3.29!. HereH is
regarded as a functional ofdr andde on the first line of Eq.
~3.29! and a functional ofc andm on the second line. Using
Eqs. ~2.24! and ~2.25! the coefficientsc1 and c2 are ex-
pressed as

c15^r&~b22Hb1!/~a1b22a2b1!, ~3.30!

c25^r&~2a21Ha1!/~a1b22a2b1!, ~3.31!

where H is the enthalpy per unit mass. We note th
the deviations dn, dB, and dp are related by
dp5kBT^r&(dn1HdB). Furthermore, using Eqs.~2.12!
and~2.13!, c1 andc2 may be rewritten into more convenien
forms,

c15~kBTc!
21S ]p

]hD
t

, ~3.32!

c25~kBTc!
21S ]p

]t D
h

5~kBb!21S ]p

]TD
h

, ~3.33!

whereb is defined by Eq.~2.29!. In Eq. ~3.33! the derivative
at constanth may well be approximated as that on the coe
istence curve. On the other hand, the second fluctuation
tribution P̃i j is given by

P̃i j5Fdc
d

dc
H1dm

d

dm
H2kBTc~ f1

1
2 u¹cu2!Gd i j

1kBTc
]c

]xi

]c

]xj
, ~3.34!

wheredc5c2^c& anddm5m2^m& are the deviations and
we have setK051. This form~but withoutdmdH/dm) has
already been known@43#. The first term of Eq.~3.34! is
diagonal and is generally much smaller thandpf near the
critical point, while the second term of Eq.~3.34! can be the
sole off-diagonal contribution giving rise to the weak she
viscosity anomaly near the critical point. Recently, howev
considerable attention has been paid to rheology in
phase states of near-critical fluids, in which the second te
of Eq. ~3.34! behaves like ad function at the interfaces an
gives rise to significant contributions to the shear viscos
and the normal stress effect@44#.

In Eq. ~3.25! the divergence of2P i j appears as the forc
density acting on the fluid. It has a rather simple form,

2¹•P
↔

52r¹
]H
dr

2~e1p!¹
dH
de

52¹dpf2dc¹
dH
dc

2dm¹
dH
dm

. ~3.35!
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Folk and Moser have obtained essentially the same exp
sion as Eq.~3.35! for binary fluid mixtures@21#, where the
entropy per unit volume is used instead of the energy d
sity.

Similarly to the pressure fluctuationdpf , we may intro-
duce the fluctuating part of the temperature by

dTf5TcdH/de5~kBb!21F2
b1

a1

d

dc
H1

d

dm
HG .

~3.36!

The equilibrium fluctuation of the above quantity will b
examined at the end of Appendix A. This expression allo
us to calculate the effect of the bulk viscosity on the te
perature deviation in nonequilibrium situations as will
shown in Sec. V.

We note that Eqs.~3.23!–~3.25! are stochastic equation
and that the equilibrium distribution functiona
exp@2(H1HK)/kBTc# is the stationary solution of the cor
responding Fokker-Planck equation. This is surely ensu
by the reversible terms in~3.23!–~3.25!. Equivalently, we
can confirmd(H1HK)/dt<0 in the absence of noises an
externally applied flow field, where the equality holds on
in homogeneous equilibrium. This property is equivalent
the usual statement that the entropy production rate is n
negative definite in nonequilibrium states.

C. Thermal conductivity and shear viscosity

The critical fluctuations of the entropy are known to
convected by the transverse velocityv' ~which satisfies
¹•v'50). Consequently the dynamics ofds is governed by
the hydrodynamic interaction and the thermal diffusivity
long wavelengths (qj!1) is given by the well-known
Einstein-Kawasaki formula@1#

D5
kBTc
6phRj

, ~3.37!

hR being the renormalized shear viscosity. This formula
one of the main results of the original mode coupling theo
On the other hand, the transverse velocity is only wea
affected byds through the last term of Eq.~3.34! as will be
shown below.

From Eq.~3.24! the reversible energy current turns out
beHJ whereH5(u1p)/r>(u1pc)/r is the fluctuating en-
thalpy. Its nonlinear part with respect to the gross variable
then

Je>Tc~ds!J, ~3.38!

because

dH5Tds1
1

r
dp>Tds. ~3.39!

The renormalized thermal conductivity is thus expressed
mally as@45,1#

lR5l01~kBTc
2!21E

0

`

dtE dr^Jex~r,t !Jex~0,0!&,

~3.40!
s-

n-

s
-

d

o
n-

t

s
.
y

is

r-

whereJex is the x component ofJe . Indeed the above for-
mula with Eq. ~3.38! was the starting point of the mod
coupling theory. On the other hand, thexy component of the
stress tensorP i j is written as

Pxy~r,t !5kBTcF ]

]x
c~r,t !GF ]

]y
c~r,t !G . ~3.41!

The renormalized shear viscosity is written in the correlat
function expression as

hR5h01~kBTc!
21E

0

`

dtE dr^Pxy~r,t !Pxy~0,0!&.

~3.42!

The original mode coupling theory predicted a logarithm
divergencehR /h0; ln(jL0), while the dynamic renormaliza
tion group theory yielded a power law form with a sma
exponent as will be shown in Eq.~3.51! below.

Kawasaki and Gunton@42# showed that the mode cou
pling theory may be formulated in general spatial dimensio
for various systems. It yields the same results as those f
the dynamic renormalization group theory@4# to first order in
e. The predictions of the mode coupling theory atd53 and
those of the dynamic renormalization group theory to lead
order ine are surprisingly close for classical fluids. The re
son for this agreement can be traced to the fact that the s
viscosity anomaly is very weak in near-critical fluids. Her
after we will briefly summarize Kawasaki and Gunton’s r
sults, because the same approach will be taken in Sec. IV
the bulk viscosity. As in Sec. III A on statics, let us decrea
the upper cutoff wave numberL of the fluctuations and ex
amine how the kinetic coefficientl(L) and the shear viscos
ity h(L) are renormalized in thee expansion scheme. To
recover the results in the literature we introduce

L~L!5kBl~L!/~rcas!
2, ~3.43!

whereas is defined by Eq.~2.36!. The thermal diffusivity in
the long wavelength limit is then

D5lR /rCp5LR /x, ~3.44!

wherelR andLR are the values ofl(L) andL(L) in the
renormalized limitL→0 andx is the variance ofc given in
Eq. ~2.16!. It is known that the dimensionless number

f ~L!5kBTcKd /@K~L!h~L!L~L!Le# ~3.45!

tends to a fixed point value asL is decreased at the critica
point @4#. To first order ine542d, Kawasaki and Gunton’s
results read

2L
]

]L
L~L!5

3

4
kBTcKd /@h~L!Le#, ~3.46!

2L
]

]L
h~L!5

1

24
kBTcKd /@L~L!Le#. ~3.47!

In deriving these equations the fluctuations in the thin sh
region L2dL,q,L are assumed to obey the Gaussi
distribution and to relax exponentially with the ra
L(L)L4. Then f (L) obeys
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2L
]

]L
f ~L!5e f ~L!2

19

24
f ~L!2. ~3.48!

As L→0 we obtainf (L)→ f * with

f *5
24

19
e1•••. ~3.49!

Therefore, we find the asymptotic behaviorL(L);L2xl and
h(L);L2xh with

xl5
18e

19
1•••, ~3.50!

xh5e2h2xl5
e

19
1•••. ~3.51!

The renormalized kinetic coefficients behave
LR;lR;j18e/19 and hR;je/19 to first order in e. It was
shown generally@4# that the relationLRhR;je2h holds to
all orders ine. The entropy fluctuations with wave numbe
of orderj21 have a very slow decay rate,

Gj5Dj225LRj22/x;j2z, ~3.52!

wherez is the so-called dynamic critical exponent. We ha
foundz53 in the mode coupling theory atd53 as shown in
Eq. ~3.37! and z54218e/191••• in the e expansion
scheme from Eq.~3.50!.

We have discussed the asymptotic behavior of the kin
coefficients. We note that it is important to extend the the
into the nonasymptotic critical region in pure fluids@19,46#.
Also in binary fluid mixtures considerable efforts have be
made on the crossover from the pure fluid behavior to
mixture behavior near the gas-liquid critical point@20–22#.

IV. BULK VISCOSITY AND FREQUENCY-DEPENDENT
SPECIFIC HEAT

A. General relations

We can show that a nonlinear part ofdpf in Eq. ~3.29!
gives rise to a strongly divergent bulk viscosity. The dom
nant nonlinear term is given by

pnl~r,t !5kBTcc2g0c~r,t !2. ~4.1!

The first termc1dH/dc in Eq. ~3.29! is very small near the
critical point. It is a general aspect valid in many near-critic
systems that the field variabledH/dm relaxes slowly in a
sound and gives rise to enhancement of acoustic attenua
The resultant frequency-dependent bulk viscosity is writ
in the time correlation function expression,

jR* ~v!5z01
1

kBTc
E
0

`

dtE dre2 ivt^dpnl~r,t !dpnl~0,0!&,

~4.2!

where dpnl is the deviation. We assume that the acous
wave numberuku is much smaller than the inverse correlati
length j21, but the acoustic frequencyv can be either
smaller or larger thanGj . Hereafterv will be assumed to be
positive.
s

ic
y

n
e

-

l

on.
n

c

For a small amplitude sound varying as exp(2ikx1ivt),
the dispersion relation is of the form

k25rKs* ~v!v2, ~4.3!

whereKs* (v) is the frequency-dependent, complex adiaba
compressibility defined by

Ks* ~v!51/@rc21 ivzR* ~v!#. ~4.4!

ObviouslyKs* (v) has the following physical meaning. Le
long wavelength pressure and density variations be
pressed as dp5Re@p1exp(2ikx1ivt)# and
dr5Re@r1exp(2ikx1ivt)# in a sound. Then the comple
amplitudesp1 andr1 are related by

r1 /r5Ks* ~v!p1 . ~4.5!

In the low frequency limit we obtain the usual adiaba
compressibilityKs5r21(]r/]p)s .

Next let us express the sound speedc5(1/rKs)
1/2 in the

low frequency limit in terms of the constant-volume speci
heatCv by the thermodynamic identity

r2c2Cv5TS ]p

]TD
s
S ]p

]TD
r

. ~4.6!

Here (]p/]T)r and (]p/]T)s5(]p/]T)r /(12Cv /Cp) both
tend to (]p/]T)cx near the critical point, so that we find th
critical behavior

rc2>TS ]p

]TD
cx

2 Y rCv;j2a/n. ~4.7!

In calculatingzR* (v) we must carefully take into accoun
of the strongL dependence ofg(L) as shown in Eq.~3.8!.
In particular, forL&j21 and on the critical isochore abov
Tc , we have found Eq.~3.9! for gR , which is the renormal-
ized value ofg(L). Then in the hydrodynamic regime (L
&j21) on the critical isochore aboveTc , the dominant non-
linear pressure fluctuation is expressed as

pnlR>rc2S kBTcT2Tc
D S ]T

]pD
cx
S c2

x D , ~4.8!

wherex is the variance ofc defined by Eq.~2.16!. As far as
the most singular term is concerned,c2/x in Eq. ~4.8! may
be replaced byr(ds)2/Cp or (dr)2/(kBTr2KT) from Eq.
~2.7! or Eq.~2.32!. We note that essentially the same expre
sion can be derived from general thermodynamic relati
~A11! and ~A12!, which was indeed used in Kawasaki
theory @13# as will be discussed in Appendix D.

It is easy to check thatzR* (0);j2dgR
2x2/Gj;jz2a/n at

v50 from the fluctuations with wave numberq in the hy-
drodynamic regionq,j21. Here the first factorj2d is the
volume of the wave number region (q,j21) andGj is the
entropy decay rateDj22 given in Eq.~3.52!. We shall see
the following simple scaling relation in the low frequenc
limit,

zR* ~0!>RBrc2/Gj , ~4.9!
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where the coefficientRB is a universal dimensionless numb
to be calculated later. The attenuation per wavelength is

al5pvzR* ~0!/rc25pRBv/Gj . ~4.10!

B. Calculation at small e

As in Kawasaki and Gunton’s theory@42# we gradually
decrease the upper cutoff wave numberL of c andm. When
the fluctuations with wave numberq in the thin shell region
L2dL,q,L are coarse grained, their contribution
pnl(r,t) should be regarded as arandompressure. Its zero
wave number component is of the form

pnl
.5kBTcc2g~L!~2p!2dE.

dqcqc2q , ~4.11!

where the integral is in the regionL2dL,q,L. From Eq.
~4.2! the incremental contributiondz* (v,L) can be calcu-
lated if cq(t) is assumed to relax exponentially in time.
the limit dL→0 we obtain

2L
]

]L
z* ~v,L!5kBTcc2

2Kdg~L!2LdSL
2 Y FGL1

i

2
v G ,

~4.12!

whereSL is the structure factor atq5L andGL is the decay
rate atq5L. We next simplify the right hand side of Eq
~4.12! using the following steps. First, we set

K~L!SL51/@j221L2#. ~4.13!

Second, we assume that the dimensionless parameterv(L)
defined by Eq.~3.12! is equal to the fixed point valuev* for
L0@L.j21. Third, C(L) is scaled as

C̄~L!5rc
21kBb

2C~L!, ~4.14!

FromC(0)5CH and Eq.~2.39! we have in the long wave
length limit

C̄~0!5~12Rv!
21Cv , ~4.15!

whereCv is the constant-volume specific heat andRv is de-
fined by Eq.~2.40!. Note thatC̄(0)5Cv only on the critical
isochore aboveTc . Now Eq. ~4.12! may be rewritten as

2L
]

]L
z* ~v,L!5

Tc
rc

S ]p

]TD
cx

2

v~L!L4Y
F C̄~L!~j221L2!2S GL1

i

2
v D G .

~4.16!

Integration of this equation yields

zR* ~v!5
Tc
rc

S ]p

]TD
cx

2 E
0

`

dLv~L!L3Y F C̄~L!~j221L2!2

3S GL1
i

2
v D G , ~4.17!

where the background part is omitted.
With Eq. ~4.17! we notice that we can introduce
frequency-dependent specific heatCv* (v) by

1/Cv* ~v!5@11 ivzR* ~v!/rc2#/Cv

5
1

Cv
1 ivE

0

`

dL

3
v~L!L3

C̄~L!~j221L2!2S GL1
i

2
v D . ~4.18!

The first term is the zero-frequency limit and the second te
arises from nonvanishingv. The frequency-dependent adia
batic compressibility defined by Eq.~4.4! is simply propor-
tional toCv* (v) in the scaling limit as

Ks* ~v!5T21S ]T

]pD
cx

2

rCv* ~v!. ~4.19!

From Eq.~4.3! the dispersion relation is expressed as

v2/k25TS ]p

]TD
cx

2 Y r2Cv* ~v!. ~4.20!

We may equally useKs* (v) andCv* (v) because they are
related by the simple relation~4.19!. In the following we will
useCv* (v) to directly check Ferrell and Bhattacharjee’s pr
diction.

1. Low frequency limit

In the low frequency limitv!Gj Eq. ~4.18! surely yields
the scaling form~4.9!. The coefficientRB in Eq. ~4.9! is
expanded in powers ofe as

RB>
1

4
v* ~12Rv!>S 124e1••• D ~12Rv!. ~4.21!

The frequency-dependent specific heat behaves as

Cv* ~v!5Cv@12RBiv/Gj1•••#. ~4.22!

Unfortunately the second order term ine is not small in
RB . In Appendix D we will show that the mode couplin
theory@13# @or use of Eq.~4.8! in three dimensions# leads to
RB>0.27/p on the critical isochore aboveTc , which is
about two times larger than our value to first order ine. See
Appendix D for more details. In future experiments it is ve
informative to directly check the simple scaling behav
~4.9! or ~4.10! rather than using Kawasaki’s original expre
sions@47,48#.

Using a dynamic model similar to that of Ref.@17#, Den-
gler and Schwable@18# calculated the critical amplitude rati
a1 /a2 for the sound attenuation above and belowTc in the
low frequency limit to be (A8/A)1/22a1nz to first order in
e. They have then estimated it to be about 5 in three dim
sions using the incorrect valueA8/A>2 @see Eq.~2.47!#. Our
theory yields (A8/A)1/22nz(11ac

2) to first order ine, ac be-
ing defined by Eq.~2.43!. The ratio is estimated to be abou
5A2;7 in our theory.
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‘2. High frequency limit

In the high frequency limitv@Gj , we calculate Eq.
~4.17! replacingv(L) by v* and the lower limit of the inte-
gration by j21. Further we set j221L2>L2 and
GL>G*Lz and transform the second term of Eq.~4.18! into

ivE
j21

` dL

L

v*

C̄~L!@G*Lz1~ i /2!v#

>2v*
n

a F 1

C̄~L* !
2

1

C̄~j21!
G . ~4.23!

Use has been made of the behaviorC̄(L)5C*L2a/n, C*
being a constant. The contribution from the regionL,j21

is of orderv* /Cv and is very small. We introduce a comple
wave numberL* defined by

L*5~ iv/2G* !1/z. ~4.24!

Therefore,

C̄~L* !5C* ~ iv/2G* !2a/nz}exp~2 ipa/nz!. ~4.25!

In Eq. ~4.23!, 1/C̄(L* ) may be readily obtained if we chang
L to x5L/L* and take the integration path of realx, while
1/C̄(j21) arises from the integration of the regio
L;j21!uL* u. Further we find 2v* n/a>1 from Eq.~3.18!
and transform Eq.~4.18! into

1

Cv* ~v!
>

1

C* S iv

2G* D
a/nz

1
Rv

Cv
. ~4.26!

The Bhattacharjee and Ferrell result@15# follows on the
critical isochore aboveTc or for Rv50, where

Cv* ~v!>C* ~ iv/2G* !2a/nz. ~4.27!

Thus on the critical isochore aboveTc the sound velocity
weakly depends onv as

c~v!>c~v/2Gj!
a/2nz}va/2nz, ~4.28!

and the attenuation per wavelength tends to be a unive
number,

al>p2a/2nz. ~4.29!

Bhattacharjee and Ferrell@15# claimed that data of4He by
Roe and Meyer@48# exactly supports Eq.~4.29!, which will
also be shown in Fig. 2 below, and that data of other flu
may be fitted to a more general formula that takes into
count the background heat capacity. See the sentences b
Eq. ~3.20! for the background heat capacity in the renorm
ization group scheme. However, near the coexistence c
Rv is close to 0.5 and the second term of Eq.~4.26! can be
important. ForRvÞ0 we have

al>~p2a/2nz!Y F11
Rv

12Rv
S v

2GjD 2a/nzG . ~4.30!
al

s
-
low
-
ve

3. General behavior on the critical isochore

To examine the behavior of generalv let us limit our-
selves to the critical isochore aboveTc for simplicity. There,
the ratioCv /Cv* (v) is a universal function of

z5 iv/2Gj , ~4.31!

and is analytic in the upper complex region Imz.0. Its nor-
mal e expansion may be expressed asCv /Cv* (v)
511v*F(z)1••• with

F~z!5211
1

2 S 12
1

z D lnz1
1

D S 322
1

2z D lnS 11D

12D D ,
~4.32!

whereD5(124z)1/2. In accord with Eqs.~4.21! and ~4.25!
we find F(z)> 1

2z for uzu!1 and F(z)> 1
2lnz21

13ip/2D1••• for uzu@1. To recover Eq.~4.25! we should
exponentiate the logarithmic factor, so we obtain an ex
nentiated form,

Cv /Cv* ~v!>~11z!a/nz$11v* @F~z!2 1
2 ln~11z!#%.

~4.33!

This expression holds only in the scaling limit in whic
jL0→0 with v/Gj held fixed. Kroll and Ruhland@17# de-
rived an expression of the frequency-dependent adiab
compressibility essentially equivalent to Eq.~4.33! @Eq. ~5!
of their first paper# and confirmed that the above scalin
function agrees well with the data of Roe and Meyer@48#.
Some further calculations show thatF(z)2 1

2ln(11z) is neg-
ligibly small for v!Gj and behaves as211(3p/8)(1
2 i )(2Gj /v)

1/21••• for v@Gj . Thus we obtain

al5~p2a/2nz!@123~Gj/2v!1/21•••# ~4.34!

in the high frequency regime and henceal slowly ap-
proaches the universal value~4.29! even in the scaling limit.
Moreover, we should not forget the fact that the slow tra
sient behavior ofv(L) andC(L), which is neglected in Eq
~4.33!, will give rise to significant corrections to the asym
totic behavior.

Now we display the scaling behavior derived from E
~4.33!. We seta/nz50.057 andv*50.114 in Eq.~4.33! and
plot c(v)/c21 and al in Figs. 1 and 2, respectively, a
functions ofv/2Gj , where

c/c~v!5Re@ACv /Cv* ~v!#, ~4.35!

al52pIm@ACv /Cv* ~v!#/Re@ACv /Cv* ~v!#. ~4.36!

In the figures we also show data of Roe and Meyer@48# for
3He on the critical isochore at 1 MHz, where we have
D5kBTc/6phRj55.6310253(T/Tc21)n cm2/sec and
j52.6310283(T/Tc21)2n cm from Table I of Ref.@49#.
The agreement is satisfactory in view of the fact that
scaling functionF(z) in Eq. ~4.32! is obtained only to first
order in e. Note that al from ~4.36! behaves as
p(a/2nz)v/Gj at low frequencies. The data of Ref.@48# at
low frequencies thus indicatesRB>a/2nz>0.029 on the
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critical isochore aboveTc for the universal numberRB in
Eqs.~4.9! and~4.10!. This value is about 70% of the value to
first order ine in Eq. ~4.21!.

C. Slow relaxation of stress correlation function

Finally we examine the slow relaxation of the stress tim
correlation function, whose Laplace transformation gives t
frequency-dependent bulk viscosity. In Eq.~4.2! the second
term is the dominant contribution in the slowly decayin
part. Let us examine the explicit time dependence of

Gxx~ t !5~kBTc!
21E dr^dPxx~r,t !dPxx~0,0!&

>~kBTc!
21E dr^dpnl~r,t !dpnl~0,0!&, ~4.37!

which is the inverse Laplace transformation of Eq.~4.17!. In
the time regionGjt&1 we obtain a strikingly slow relax-
ation,

Gxx~ t !>S ]p

]TD
cx

2 S Tc
rcC*

D ~2G* t !2a/nz>rc2~2Gjt !
2a/nz,

~4.38!

FIG. 1. c(v)/c21 vsv/2Gj on the critical isochore aboveTc
obtained from Eqs.~4.33! and~4.35! on a semilogarithmic scale. It
is compared with the data of Ref.@48#.

FIG. 2. al vs v/2Gj on the critical isochore aboveTc obtained
from Eqs.~4.33! and ~4.36! on a semilogarithmic scale. It is com-
pared with the data of Ref.@48#.
e
e

whereC*5C(L)La/n and G*5G(L)L2z are the critical
amplitudes. Notice that Eq.~4.38! holds for time scales much
longer than microscopic times. On the other hand, in the t
region Gjt@1, the hydrodynamic wave number regio
L,j21 gives rise to an algebraic decay,

Gxx~ t !>rc2v*G~d/2!~2Gjt !
2d/2, ~4.39!

whereG(x) is theG function. This tail is of the same origin
as that of the so-called long time tail first found in compu
simulations@50#. We note that this tail can be derived readi
from Eq. ~4.8!. Corresponding to the presence of the hyd
dynamic long tail Eq.~4.39! the frequency-dependent bul
viscosity behaves singularly in the low frequency lim
v!Gj as

zR* ~v!5~rc2/Gj!$RB2@pv* /2sin~ep/2!#~ iv/2Gj!
12e/2

1•••%. ~4.40!

V. EFFECT OF THE BULK VISCOSITY
ON MACROSCOPIC HYDRODYNAMICS

Let us consider a nonequilibrium situation with hydrod
namic disturbances varying very slowly in space compa
with the correlation length. However, their time scale can
shorter than the average lifetime of the critical fluctuatio
1/Gj . Hereafter the averages over the thermal fluctuati
will be written asdr̄, d s̄, d p̄, anddT̄, for the deviations of
density r, entropys, pressuredpf , and temperaturedTf ,
wheredpf anddTf are defined by Eqs.~3.29! and~3.36!. For
the pressure deviationd p̄ the usual thermodynamic relatio
is modified by the frequency-dependent bulk viscosity. F
sinusoidal disturbances we obtain

d p̄~r,t !5S ]p

]sD
r

d s̄~r,t !1@c21 ivzR* ~v!/r#dr̄~r,t !.

~5.1!

For general time dependence we have

d p̄~r,t !5S ]p

]sD
r

d s̄~r,t !1c2dr̄~r,t !

1r21E
2`

t

dt1Gxx~ t2t1!
]

]t1
dr̄~r,t1!, ~5.2!

where use has been made of the stress correlation func
Gxx(t) in Eq. ~4.37!. The relation~4.5! holds in the adiabatic
case (d s̄50).

Then we are interested in howdT̄ is influenced by the
frequency-dependent bulk viscosity. Since the no
Markovian part ofdT̄ arises fromdH/dm, the definitions
~3.33! and ~3.36! indicate that it is equal to that ofd p̄ mul-
tiplied by (]T/]p)h@>]T/]p)cx], h being defined by Eq.
~2.12!. We propose the following simple relation:

dT̄~r,t !5
T

Cp
d s̄~r,t !1S ]T

]pD
s

d p̄~r,t !. ~5.3!
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Here we have replaced (]T/]p)h by (]T/]p)s , whose dif-
ference is at most of orderCv /Cp on the critical isochore
above Tc . This is because (]p/]T)s2(]p/]T)h
5r2(]s/]T)h /(]r/]T)p;Cv /Cp on the critical isochore
aboveTc . However, on the coexistence curve belowTc , the
difference is of order (Cv /Cp)

1/2 as shown in Eq.~2.44! and
cannot be neglected generally.

A. Density change in the fixed volume condition

Let us suppose a near-critical fluid on the critical isoch
aboveTc in a container with a fixed volume@7,8# and oscil-
late the boundary temperature as

dTb5T1cos~vt ! ~5.4!

in the following frequency range,

D/L2!v!c/L, ~5.5!

whereD is the thermal diffusivity andL is the length of the
container. The pressure deviationd p̄ may be assumed to b
homogeneous throughout the container whenv is much
smaller than the inverse acoustic timec/L, so that

d p̄>~]p/]T!r^dT̄&, ~5.6!

where^dT̄& is the average over space. Furthermore, from
~5.5! the entropy deviation is nonvanishing only near t
boundary wall,

d s̄~r,t !5Asexp~2xAiv/D !, ~5.7!

wherex is the distance from the wall. The thickness of t
thermal diffusion layer is (D/v)1/2 and is much shorter tha
L from Eq. ~5.5!. The coefficientAs can be calculated usin
Eqs.~5.4!, ~5.6!, and~5.7!. In the one-dimensional geometr
in Ref. @7# some calculations show that the density deviat
is expressed as Re@(dr) inexp(ivt)#5@Re(dr) in#cos(vt)
2@Im(dr) in#sin(vt) far from the boundary, where

~dr! in>rS ]p

]TD
r

T1 Y HF11
L

2gs
Aiv/DG@rc2

1 ivzR* ~v!#J , ~5.8!

gs5Cp /Cv being the specific heat ratio growing a
(T/Tc21)2g1a on the critical isochore aboveTc . The den-
sity deviation thus becomes out of phase with respect to
boundary temperature oscillation due to the piston effect
the frequency-dependent bulk viscosity. On the other han
Eq. ~5.3! is assumed, the temperature deviation in the inte
region is not affected by the bulk viscosity as

~dT! in>T1 Y F11
L

2gs
Aiv/DG , ~5.9!

which is of the same form as in Ref.@7#. We are interested in
the frequency dependence and imaginary part of the ab
quantities. In other geometries such as a rectangula
e

.

n

e
d
if
r

ve
or

spherical cell, the relations~5.8! and ~5.9! still hold if L is
interpreted asV/A, whereV andA are the volume and the
surface area of the cell.

B. Density change in a fixed pressure

As the second example we change the pressure att50
infinitesimally from p to p1p1 in a stepwise manner an
keep it constant at later times. We follow the time develo
ment of the density change (dr) in(t) far from the boundary
where the entropy is unchanged. From Eq.~5.1! we obtain

~dr! in~ t !5K̂~ t !p1 /c
2, ~5.10!

where the relaxation functionK̂(t) is related to the complex
adiabatic compressibility in Eq.~4.4! by

E
0

`

dte2 ivtK̂~ t !5rc2Ks* ~v!/ iv

5rc2/$ iv@rc21 ivzR* ~v!#%. ~5.11!

By taking the inverse Laplace transformation ofKs* (v)/ iv
we obtain a very singular short-time behavior,

K̂~ t !>~2Gjt !
a/nz, ~5.12!

which holds forGjt!1. ForGjt@1 the long tail Eq.~4.39!
appears as

K̂~ t !512v*G~d/2!~2Gjt !
2d/21•••. ~5.13!

Thus (dr) in(t) increases from 0 very steeply as Eq.~5.12! for
Gjt!1 and approaches top1 /c

2 slowly as Eq.~5.13!.

VI. SUMMARY

We summarize our main results. In Sec. II we discus
the logical consequences of the mapping relations~2.12! and
~2.13! of the field variables. In our Ginzburg-Landau a
proach the mapping relations~2.21! and~2.22! of the density
variables are most crucial. We have introduced the entr
variable as in Eq.~2.31! and have found the exact specifi
heat relations~2.32!–~2.34!. TheCv for fluids is asymptoti-
cally proportional to the specific heatCM for Ising spin sys-
tems defined by Eq.~2.20! and is related toCH by Eq.~2.39!.
Then we have found the presence of the factor 12Rv in the
critical amplitude relation~2.41!, whereas it does not appea
in the relation~2.47! for the specific heat (Cv)cx in two phase
coexistence. In previous experiments (Cv)cx has been mea
sured, leading to the conclusion that the specific heat r
coincides with that ofCH at h50 in Ising spin systems
However, ifCv is measured close to the coexistence curve
the presence of one phase only, the relationA8/A>1 should
be obtained@37#. An alternative method will be to measur
the sound speedc in the low frequency limit on the coexist
ence curve, which will give information ofCv on the basis of
Eq. ~4.6!. On the other hand, the two-scale factor universa
relation~2.48! readily follows in terms ofCv from the map-
ping relations~2.12! and ~2.13!.

In Sec. III we introduced the Ginzburg-Landau-Wilso
Hamiltonian~3.1!, which can describe the strong singulari
of the order parameterc and the weak singularity of the
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energy variablem. Then we have presented the dynam
equations~3.24!–~3.26!. They have been derived general
from the conservations of mass, energy, and momentum
are natural extensions of the usual hydrodynamic equat
of compressible fluids. As derived in Appendix C we ha
presented the complete expression for the stress te
~3.28!–~3.34! arising from the fluctuations of the mass a
energy densities. The expression for the temperature fluc
tion dTf is also given in Eq.~3.36!. We have briefly re-
viewed the critical dynamics of the entropy and the tra
verse velocity in the mode coupling theory and the dynam
renormalization group theory.

In Sec. IV we have identified the nonlinear pressure fl
tuation~4.1!, whose slow temporal relaxation@explicitly cal-
culated in Eqs.~4.38! and~4.39!# gives rise to the anomalou
frequency-dependent bulk viscosityzR* (v) defined by Eq.
~4.2!. It may be transformed into the integral form~4.17!.
The frequency-dependent adiabatic compressibilityKs* (v)
and specific heatCv* (v) can be naturally introduced by Eq
~4.4!, ~4.18!, and~4.19!. TheCv* (v) behaves as Eq.~4.22! in
the low frequency regime and as Eqs.~4.26! and~4.27! in the
high frequency regime. The Ferrell-Bhattacharjee fo
~4.27! is valid on the critical isochore aboveTc , but
Cv* (v) is more complex on the coexistence curve as sho
in Eq. ~4.26!. We have also given the explicit expression f
the leading nonlinear pressure fluctuation in Eq.~4.8! at long
wavelength.

In Sec. V we have presented the fundamental constitu
equations~5.1!–~5.3!. Note that Eq.~5.3! holds only to lead-
ing order in the critical singularity. As applications we ha
examined two examples. First we have calculated the den
variation against an oscillatory boundary temperature in
fixed volume condition and secondly that after a small pr
sure jump in the isobaric condition.

In Appendix A we have summarized the relationship b
tween the thermodynamic derivatives and the equilibri
correlation functions. In Appendix B the specific he
(Cv)cx in two phase coexistence belowTc has been calcu
lated. In Appendix C the reversible stress tensor of pure
ids has been derived. In Appendix D the relation betwe
Kawasaki’s theory and our theory will be discussed. Th
give essentially the same results at low frequencies.

We finally make some remarks.~i! Though we have lim-
ited ourselves to pure fluids, we have shown the gen
mechanism of critical acoustic anomaly applicable to ma
near-critical systems. That is, we should first identify an
ergy variablem as well as the order parameterc in the
model HamiltonianH, wherem is nonlinearly coupled to
c in H as in Eq.~3.2! and has the weak critical singuralit
with the critical exponenta. There should be a linear term o
the field variabledH/dm generally in the fluctuating pres
sure as in Eq.~3.29!. It contains a bilinear term ofc and
relaxes slowly in a sound giving rise to enhanced dissipat
We should verify this scenario in other systems such as
nary fluid mixtures near the consolute critical point a
4He near the superfluid transition.~ii ! As noted below Eq.
~2.44!, acoustic properties become much more anomal
than in one-phase states when a fluid is phase separati
the course of nucleation or spinodal decomposition. An
hanced frequency-dependent adiabatic compressibility
nd
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such two-phase states was already calculated in Ref.@32#.
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APPENDIX A

We first give some exact thermodynamic relations, wh
are valid even away from the critical point. To derive the
we consider the grand canonical distribution of pure flu
with slowly varying temperatureT(r)5T1dT(r) and
chemical potentialm(r)5m1dm(r),

r local5
1

J local
expH 2E dr

1

kBT~r!
@ ê~r!2m~r!r̂~r!#J .

~A1!

whereJ local is the partition function in local equilibrium
@51,20,21#. As in Sec. II quantities with the caret will denot
dynamical variables with molecular expressions. We neg
the time dependence of all the quantities, so the time varia
t will not be written explicitly. When the deviations are in
finitesimal, r local deviates from the equilibrium distribution
req as

r local5reqH11E dr@dV̂~r!2^dV̂~r!&#J ~A2!

with

dV̂~r!5ê~r!dB~r!1 r̂~r!dn~r!, ~A3!

wheredB5dT/kBT
2 anddn5dm/kBT2(m/kBT

2)dT from
the definitions~2.3! and ~2.4!. The logarithm of the local
equilibrium partition functionJ local is expanded as

kBln~J local!5pV/T1E dr@udB1rdn#1•••, ~A4!

wherep is the pressure andV is the volume of the system
From Eq. ~2.6! the second term of Eq.~A4! is the space
integral of the deviationdv5udB1rdn as ought to be the
case.

The average of any local variable, sayÂ(r), overr local is
expressed as

^Â~r!& local5^Â&1^Â:ê&dB1^Â: r̂&dn, ~A5!

where use has been made of the definition~2.10!. This leads
to relations between thermodynamic derivatives and v
ances,

~]A/]B!n5^Â:ê&, ~A6!

~]A/]n!B5^Â: r̂&. ~A7!

Here A5^Â& is a thermodynamic quantity. The relation
~2.7!–~2.9! readily follow as special examples.
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Next we rewrite Eqs.~A6! and~A7! in terms of the more
usual field variables, p and T. From dn5@dp
2(rH)dT/T#/rkBT, H being the enthalpy per unit mass, w
find

~]A/]T!p5
r

kBT
^Â: ŝ&, ~A8!

~]A/]p!T5
1

rkBT
^Â: r̂&, ~A9!

where the variableŝ in Eq. ~A8! is defined by Eq.~2.31!. We
can use these relations to derive~2.32!–~2.35!. As another
example we setÂ(r)5P̂i j (r), whereP̂i j is thei j component
of the stress tensor. Because^P̂i j &5pd i j we find

^P̂i j : ŝ&50, ^P̂i j : r̂&5rkBTd i j , ~A10!

We may then introduce the projection operatorPhyd onto the
linear part of the gross variables in the long wavelen
limit. Its operation on the diagonal componentP̂i i yields the
hydrodynamic pressure variable

d p̂5PhyddP̂i i5c2Fdr̂2S ]r

]sD
p

d ŝG . ~A11!

This variable has been discussed in the literature@28,52# and
the relation^ p̂: p̂&5kBTrc2 is well known. It is known that
the variance ofP̂i i is larger than the variance ofp̂ and re-
mains nonvanishing even at the critical point@13#. More gen-
erally, for arbitraryÂ(r) we obtain

^Â: p̂&5kBTrc2~]A/]p!s . ~A12!

In Sec. II we have considered the variances involvingr̂,
ê, andŝ in the long wavelength limit. The distribution of th
fluctuations ofr̂ and ê with wave numbers much smalle
thanj21 is Gaussian of the form exp(2*drHhyd/kBT) with

Hhyd/T52
1

2 S ]2S

]r2D ~dr̂ !22S ]2S

]r]uD dr̂dê2
1

2 S ]2S

]u2D ~dê!2,

~A13!

where S5rs is the entropy per unit volume. From
dS5(du2mdr)/T we obtain

]2S

]r2
52kB

]n

]r
,

]2S

]r]u
52kB

]B

]r
,

]2S

]u2
52kB

]B

]u
.

~A14!

These thermodynamic relations again lead to Eqs.~2.7!–
~2.9!. Furthermore we obtain

T
]

]ê
Hhyd5S ]T

]r D
u

dr̂1S ]T

]uD
r

dê5
T

Cv
Fd ŝ2S ]s

]r D
T

dr̂G .
~A15!

This is the hydrodynamic temperature fluctuation induced
the fluctuations of the gross variables similarly to the hyd
dynamic pressure fluctuation~A11!. The fluctuation variance
of the above quantity iskBT

2/rCv as is well known in the
h

y
-

literature@52#. We note that the free energy functionalH in
Eq. ~3.1! should tend toHhyd in the long wavelength limit or
after the renormalization (L!j21) in equilibrium. Thus the
temperature deviationdTf defined by Eq.~3.36! should tend
to Eq. ~A15! in the long wavelength limit around equilib
rium.

APPENDIX B

Let us consider macroscopic coexistence of a liquid
gion and a gas region confined in a cell with a fixed to
volumeV. In terms of the mass densities,r l andrg , and the
masses,M l andMg ,V may be expressed as

V5
1

r l
M l 1

1

rg
Mg . ~B1!

Here quantities with the subscriptl ~or g) are those of the
liquid ~or gas! phase. We then change the temperatureT
infinitesimally to T1dT. When V is fixed, M l and Mg
change asM l →M l 1dM l and Mg→Mg1dMg . Here
dM l 1dMg50 and

dV5S 1r l 2
1

rg
D dM l 1M l dS 1r l D1MgdS 1rgD50.

~B2!

This mass transformation takes place as a mass cu
through the interface. Hence the thermal equilibration time
Cv measurements in two phase states is much longer
that in one phase states for the sameuT2Tcu. Papers in Ref.
@33# report or discuss abnormally long thermal relaxations
the presence of an interface separating gas and liquid
gions.

In the final stage the pressure change is given by

dp5S ]p

]TD
cx

dT, ~B3!

because the final state is again on the coexistence cu
Here (]•••/]•••)cx is the derivative along the coexistenc
curve. We are interested in the total entropy change,

dStotal5~sl 2sg!dM l 1M l dsl 1Mgdsg

5M l Fdsl 2S ]p

]TD
cx

dS 1

r l
D G

1MgFdsg2S ]p

]TD
cx

dS 1rgD G , ~B4!

wheresl andsg are the entropies in the two phases and u
has been made of Eq.~B2!. By eliminating dp using Eq.
~B3! we obtain the relations

ds5
1

T
CpF12S ]p

]TD
cx

S ]T

]pD
s

GdT, ~B5!

dS 1r D 5
1

T
CpS ]T

]pD
s

F12S ]p

]TD
cx

S ]T

]pD
r

GdT, ~B6!
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whereds andd(1/r) are the entropy and volume changes
the liquid ~or gas! phase if the thermodynamic derivative
are those of the liquid~or gas! phase. The specific heat i
two-phase coexistence per unit mass is defined by

~M l 1Mg!~Cv!cx5TS dStotal
dT D . ~B7!

After some calculations we obtain

~M l 1Mg!~Cv!cx5M l Cvl @11Zl8 #1MgCvg@11Zg8#,
~B8!

where Cvl and Cvg are the specific heatCv in the two
phases and

Z85SCp

Cv
21D F S ]T

]pD
r

S ]p

]TD
cx

21G25 T

r3CvKT
S ]r

]TD
cx

2

.

~B9!

The Zl8 andZg8 in Eq. ~B8! are the values ofZ8 in the two
phases. From Eq. ~2.44! and (]T/]p)s
5(]T/]p)r(12Cv /Cp) we find Z8→ac

2>1 as T→Tc on
the coexistence curve. Thus we obtain Eq.~2.45! near the
critical point. The relation~B9! is equivalent to that due to
Fisher@36#.

APPENDIX C

We derive the reversible part of the stress ten

P
↔

5$P i j % arising from the fluctuations ofr ande neglecting
dissipation. We consider a small fluid element at positior
and at timet. Due to the velocity fieldv(r,t) the element is
displaced to a new position,r85r1u with u5vdt, after a
small time intervaldt. Then the densityr is changed tor8 as

r8>r~12¹•u!. ~C1!

On the other hand, the change of the internal energy den
e is written as

e8>e~12¹•u!2(
i , j

P i j

]

]xj
ui . ~C2!

We derive the second term of Eq.~C2! by calculating the
change of the total energy densitye1 1

2rv
2 in the fluid ele-

ment. We can confirm that the deviation ofP i j from the
averagepd i j (>pcd i j ,pc being the critical pressure! is very
small and that Eq.~C2! may be further approximated by

e8>e2~e1p!¹•u. ~C3!

Against these changes the Ginzburg-Landau free en
~3.1! is changed as

dH5H82H52E dr(
i , j

~dP i j !
]

]xj
ui , ~C4!

which is nothing but the definition ofdP i j5P i j2pd i j . The
displaced free energy is written as
r

ity

gy

H85kBTcE dr8F f ~r8,e8!1
1

2
u¹8c8u2G . ~C5!

From r85r1u we obtaindr85dr(11¹•u). The space de-
rivatives are changed as

]/]xi8>]/]xi2(
j

~]uj /]xi !]/]xj . ~C6!

Using these relations together with~C1! and~C2! we obtain

P i j5Fp1r
dH
dr

1~e1p!
dH
de

2kBTcS f1 1

2
u¹cu2D Gd i j

1kBTc
]c

]xi

]c

]xj
, ~C7!

whereH is regarded as a functional ofr ande in the deriva-
tives. From this expression we can confirm that the deviat
P i j2pd i j is very small and Eq.~C3! is surely a good ap-
proximation. Furthermore, under the linear relations~2.21!
and ~2.22! we notice the identity

dr
d

dr
1de

d

dm
5dc

d

dc
1dm

d

dm
. ~C8!

Then usingr5^r&1dr ande5u1de, we may rewrite Eq.
~C7! as in Eq.~3.28! with Eqs.~3.29! and ~3.34!.

APPENDIX D

In the original mode coupling theory@13# the sound at-
tenuation and dispersion are expressed in terms of com
cated combinations of thermodynamic derivatives and sub
quent analyses used these expressions@47,48#. Hence let us
first simplify the sound attenuation per wavelengthal in
Kawasaki’s theory using the two-scale factor universa
~2.48! and ~3.19!. It reads

al52pc2AI ~v* !, ~D1!

where

A5
kBT

3

2p2r3
1

c4Cv
2 S ]p

]TD
r

2

kS ]k

]TD
s

2

, ~D2!

k5j21 being the inverse correlation length. TheI (v* ) is a
function of the dimensionless frequencyv*5v/2Gj defined
by

I ~v* !5E
0

`

dx
x2

~11x2!2
v*K~x!

K~x!21~v* !2
, ~D3!

whereK(x)5 3
4@11x21(x32x21)arctan(x)# is the so-called

Kawasaki function. We first use Eq.~4.7! to eliminatec2 to
obtain

2pc2A5S kBT

prCv
DkS ]k

]TD
s

2

. ~D4!
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Next we set@48# (]k/]T)s>(]k/]T)r>nk/(T2Tc) on the
critical isochore aboveTc . Further using the relation~2.48!
of the two-scale factor universality, we arrive at

al>~an2/pRj
3!I ~v* !, ~D5!

whereRj>0.25 is defined by Eq.~2.48!. For v*!1 we
integrate~D3! by settingK(x)>x2(11x2)1/2 following Perl
and Ferrell@3# to obtainI (v* )>2v* /3. Thus,

al>~an2/3pRj
3!v/Gj>0.27v/Gj . ~D6!

The coefficient 0.27 is of the same order as oure expansion
value pRb5(p/24)e1••• obtained from Eqs.~4.10! and
~4.21!.

Next we clarify the relationship between the mode co
pling theory and our theory. The mode coupling theo
@2,13# treated the time correlation function of the zero wa
number component of (12Phyd)dPxx , wherePhyd is the
projection operator onto the gross variables in~A11!. This
n

. B

.J

on

B

.
.

n
d
,

a-
-

nonlinear pressure fluctuation was then approximated a
linear combination ofcqc2q , in which the coefficient is
called the vertex functionVq . Kawasaki and Tanaka@53#
found microscopically that the projection ofdPxx onto the
bilinear part of the order parameter is very small at lo
wavelengths, which is also the case in our Ginzburg-Lan
scheme becausedH/dm is orthogonal to any powers ofc as
is evident from Eq.~3.4!. From Eqs.~A11! and ~A12! it
follows Kawasaki’s result

Vq>2 kBTrc2S ]

]p
SqD

s

Sq
22> kBTpc

2S ]

]p
k2D . ~D7!

Because the structure factorSq is of the Ornstein-Zernike
form at smallq, Vq turns out to be independent ofq. After
some calculations we find thatVq(5V0) is equal to the co-
efficient of our nonlinear pressure Eq.~4.8! multiplied by
g>2n. Thus the difference is only in the coefficient an
vanishes ase→0.
V
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